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The Problem: Definition 

• The legacy silo is a 

one-metre thick wall 

enclosure of radioactive 

sludge and is to be 

evacuated by a 

mechanical equipment. 
Figure 1: Magnox Swarf Storage Silos at Sellafield [1] 

• Every volume of sludge in the region to be 

evacuated needs to first be scanned for the 

presence of gas pockets, metals, concrete 

materials, temperature and potential hazards. 
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The Problem: Task 

• To obtain a 3D characterisation 

map of density distribution, 

temperature and material 

identification of the sludge 

volume to a depth >15 cm and 3 

mm resolution. 

• To design an invasive tomographic imaging 

system that will be attached to the mechanical 

equipment and operate from one side of the 

investigated volume. 

 

Figure 2: Schematic diagram showing 

deployment 
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Available Solutions: Overview 

• Tomographic imaging involves illuminating an 

object by an energy source, and obtaining 

information from the energy projections [2].  
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Available Solutions: Techniques 

  Principle of 

Operation 

Example of 

Applications 

Limitation 

X-Ray 

Backscattering 

Tomography 

Compton 

scattering at 

interactions 

underwater naval dome 

inspection [3] 

Penetration is limited 

by thickness and 

inhomogeneity 

Ground Penetrating 

Radar 

Reflections at 

dielectric 

boundaries 

Detection of landmine 

and underground water 

leakages [6] 

Accuracy depends on 

dielectric contrast at 

boundaries 

Vibrational 

Spectroscopy and 

LIDAR systems 

Light absorption 

and scattering 

detection and 

identification of 

underwater submarines [5] 

High light scattering 

and absorption affect 

penetration [4] 

Magnetic Field 

Technology 

Systems 

Electromagnetic 

Induction and 

Interference 

Two-phase flow process 

imaging and for metallic 

mine detection [8]. 

Preferred for 

detection than 

identification. 

Acoustic 

Backscattering 

Systems 

Sound scattering 

at acoustic 

boundaries 

Settling suspension and 

velocity profile inspection 

in ponds [7] 

Low Signal to Noise 

Ratio due to Multiple 

Scattering  

Table 1: Comparison of some Tomographic techniques 

6/13 



The Proposed Solution 

• Acoustic Backscattering Tomography is 

considered most viable, and will be investigated 

further 
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The Proposed Solution: Operation? 

(1) 
 

(2) 

Where; R – sound power reflection coefficient;               z1 – Acoustic impedance of medium I 

 T – sound power transmission coefficient;         z2 – Acoustic impedance of medium II 
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Fig 4:Plot of R against Log (a) where a=z1/z2 
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Air (z=0.0004) 0.9999 0.9998     1.0000     0.9989     

Water 0.7590 0.4730     0.8785       

  

  

Steel 0.1297 0.4929   

  Concrete  0.2094   

Table 2: R values for various Acoustic Boundary cases 
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The Proposed Solution: Operation? 

Water Medium 2 Medium 3 Medium 4 

12.5%                                25%  

3.125%                             6.25%                      12.5%   

0.78125%                         1.5625%                  3.125%                     6.25% 

50% 

Given z1 = 5.58286, z2 = 8.2626, z3 = 46.13 and z4 = 8.2626 MRayls 

100%                                50%                          25%                         12.5% 

 

Figure 5: Schematics showing scattering at acoustic boundaries 
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The Proposed Solution: Challenges? 

 

• Improving the Signal to Noise Ratio (SNR) 

• Attaining about 3 mm spatial resolution 

• Understanding the worst case scenario 

• Ensuring radiation tolerance 
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Further Works 

• Laboratory experiments on: 

̶ Understanding the acoustic attenuation in water, 

sludge, metal, gas and concrete samples. 

̶ Understanding the acoustic backscattering profile for 

boundary samples. 

• Development of a: 

̶ servo motor control circuit to coordinate scanning,  

̶ sound transducer circuit to transmit and receive signals  

̶ reconstruction algorithm to interpret the data. 

12/13 



Conclusion 
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It will be great to have a device inside the silo that 

provides us with sufficient information about the 

radioactive sludge before and during evacuation. 

  

We are working to make this happen. 

 



Thank You 
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