
In-line rheometry and flow 
characterisation of dense slurries in 
pipe flow using acoustic methods 
 
H.P. Rice1, D. Harbottle1, T.N. Hunter1, J. Peakall2 and M. Fairweather1 

1 School of Chemical and Process Engineering 
2 School of Earth and Environment 
University of Leeds 
 
First Annual Meeting 
April 15-16, 2015 
Millennium Gallery, Sheffield 



Background and outline (1/2) 

• Nuclear Research Group at Leeds has expertise in acoustic characterisation of 
multiphase flow, with specific interest in nuclear-engineering applications, examples 
of which are shown below  

[1] Rice HP, Fairweather M, Peakall J et al. (2015), Chem. Eng. Sci. 126, 745-758 
[2] Rice HP, Fairweather M, Peakall J et al. . (2015), Chem. Eng. Sci. 126, 759-770; Soepyan FB et 
al. (2014), AIChE Journal 60 (1), 76-122 
[3] Rice HP et al., in preparation 

a. Particle concentration [1] 
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b. Critical flow velocity [2] c. Bedform evolution [3] 



Background and outline (2/2) 

• Aim to develop new acoustic methods for characterisation of dense slurries, as follows: 
 

1. In-line pipe rheometry using pressure drop-velocimetry method 
 

2. Concentration profile measurement with dual-frequency method 
 

3. Time-domain velocimetry for increase accuracy 
 

4. Commissioning of new flow loop laboratory 



In-line pipe rheometry (1/3) 

Comparison of in-line and conventional rheometry results for 
food substances [1] 

[1] Wiklund J and Stading S (2008), Flow Measurement and 
Instrumentation 19 (3-4), 171-179 

• When access difficult, in-line rheometry means samples do not need to be taken for off-
line analysis 

• In-line velocimetry-pressure drop rheometry method used, as follows: 
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𝛾 (𝑟)
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 where U(r) is from velocimetry and ΔP from pressure sensors over length L 



In-line pipe rheometry (2/3) 

Pipe flow loop in Sorby Laboratory, 
with acoustic and pressure 

transducers attached 

• Method tested with fluids with known rheological properties: water, glycerol 
solution (both Newtonian) and xanthan gum-water suspension (shear-thinning) 
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Glycerol

Xanthan

Off-line rheometry of glycerol (60 % by mass) and xanthan gum (0.1 % 
by mass) at 15° C, cup and bob geometry 



In-line pipe rheometry (3/3) 

1. Glycerol test run: 60% by mass 
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2. Xanthan test run: 0.1% by mass 
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Calibration of new acoustic instrument (1/2) 

Stirred mixing vessel with multi-frequency 
transducer pointing downwards and 
attached to new acoustic instrument 

• Acoustic backscatter strength, V, from suspension of particles 
depends on particle size, d, particle concentration, M, and the 
material properties of the particles, most importantly αs, 
attenuation due to particles; ξh is acoustic attenuation coefficient 
in homogeneous case and can be measured as given below. 

• Attenuation coefficient measured with new instrument and 
compared against previous study [1] for validation purposes 

[1] Rice HP, Fairweather M, Hunter TN et al. (2014), J. Acoustical Society of America 136 (1) 156-169; 
Rice HP, Fairweather M, Peakall J et al. (2014), Chemical Engineering Science 126 745-758; datum 
courtesy of Iain Smith, M.Sci. student 
[2] Images courtesy of Dr. David Cowell, School of Electronic and Electrical Engineering 

New acoustic instrument, 
with cover removed [2] 

Image of reflected acoustic pulse, with components from 
front and back of reflective surface superimposed 



Calibration of new acoustic instrument (2/2) 

Backscatter amplitude results from stirred 
mixing tank with suspensions of glass spheres 

using new acoustic instrument [4] 

• Preliminary results agree well with previous measurements 
• Aim to apply method to suspensions of nuclear-simulant materials to determine 

particle concentration field using dual-frequency method [3] 

Acoustic attenuation coefficients 
measured with new instrument, 
compared to previous study [2] 
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[2] Rice HP, Fairweather M, Hunter TN et al. (2014), J. Acoustical Society of America 136 (1) 156-169; 
Rice HP, Fairweather M, Peakall J et al. (2014), Chemical Engineering Science 126 745-758; datum 
courtesy of Iain Smith, M.Sci. student 
[3] Hurther D, Thorne PD, Bricault M et al. (2011), Coastal Engineering 58 (7) 594-605 
[4] Images courtesy of Dr. David Cowell, School of Electronic and Electrical Engineering 



Time-domain velocimetry (1/2) 

[5] Jacobson SA, Denbigh PN and Naude DEH (1985), Ultrasonics 23 (3) 128-132 
[6] Bonnefous O, Pesque P (1986), Ultrasonic Imaging 8 (2) 73-85 

• Method offers potential improvement over more 
common Doppler methods in terms of data quality, 
aliasing/bandwidth and near-wall measurements 

• Cross-correlation function used to find delay between 
signals from two parallel transducers; particle velocity 
then calculated as separation distance is known 

 

Aliasing effects in Doppler and 
time-domain methods [6] 

Illustration of time-domain 
velocimetry method [5] 



Time-domain velocimetry (2/2) 

Configurations for testing of time-domain velocimetry 

~30 cm

Probes
Mixer

 

• Two test configurations used; first was not successful 
• MATLAB code (function “xcorr”) used to compute cross-correlation and delay time between signals 
• Plastic particles used as scatterers; computed velocities to be compared with Stokes settling 

velocities at d50: 
 

𝑈St =
2

9

𝑔𝑑2 𝑆 − 1

ν
 

 
• To be combined with pressure-drop measurements and compared with Doppler method in in-line 

rheometry method 



New flow laboratory and future plans 

Composite photograph of layout of new flow loop laboratory, being commissioned 

• Using methods described here, aim is to fully characterise settling and non-settling, high-
concentration suspensions in terms of velocity and concentration fields, and in-line rheometry at 
lower flow rates 

• Aim to also measure deposition velocity at higher flow rates using method described in recent 
study [7] and particle image velocimetry (PIV) for validation of acoustic data and for near-wall 
measurements 

• A range of nuclear-simulant materials will be used, e.g. calcium carbonate, magnesium hydroxide 
and barytes suspensions, with and without flocculating agents 

• Two pipe flow loops, internal diameters D = 60 and 25 mm; flow can be directed in horizontal, 
vertical or inclined orientations 

[7] Rice HP, Fairweather M, Peakall J et al. (2015), Chemical Engineering 
Science 126 759-770 
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