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. Nuclear Research Group at Leeds has expertise in acoustic characterisation of
multiphase flow, with specific interest in nuclear-engineering applications, examples
of which are shown below

b. Critical flow velocity [2]

a. Particle concentration [1]
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Fig. 3. Normalised concentration profiles, M/M,, or ¢/¢,,. vs. reduced distance from
centreline, y'/D. Small glass spheres (Honite 22, dsp=41.0pm) at Re=53 100,
52700 and 52100; ¢,=05% 1% and 3% M,=124, 247 and 728kgm~—*
(M,= 134, 27.4 and 79.9 kg m~?), respectively. Lower half of flow shown.
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c. Bedform evolution [3]
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Figure 1: Phase diagram with new variables.
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. Aim to develop new acoustic methods for characterisation of dense slurries, as follows:

1.

2.

3.

4.
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In-line pipe rheometry using pressure drop-velocimetry method

Concentration profile measurement with dual-frequency method

Time-domain velocimetry for increase accuracy

Commissioning of new flow loop laboratory
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When access difficult, in-line rheometry means samples do not need to be taken for off-
line analysis
In-line velocimetry-pressure drop rheometry method used, as follows:

u(r) = %;ym =Ty = 2

where U(r) is from velocimetry and AP from pressure sensors over length L
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. Method tested with fluids with known rheological properties: water, glycerol
solution (both Newtonian) and xanthan gum-water suspension (shear-thinning)
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Pipe flow loop in Sorby Laboratory,
with acoustic and pressure
transducers attached

Off-line rheometry of glycerol (60 % by mass) and xanthan gum (0.1 %
by mass) at 15° C, cup and bob geometry
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1. Glycerol test run: 60% by mass
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2. Xanthan test run: 0.1% by mass
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. Acoustic backscatter strength, V, from suspension of particles
depends on particle size, d, particle concentration, M, and the
material properties of the particles, most importantly «,
attenuation due to particles; ¢, is acoustic attenuation coefficient
in homogeneous case and can be measured as given below.

. Attenuation coefficient measured with new instrument and
compared against previous study [1] for validation purposes
R | MG = &M
l/JT' o rJy h
1 9%G . . . N
G = In(yrV) § =—= Stirred mixing vessel with multi-frequency
h 20Mor transducer pointing downwards and

attached to new acoustic instrument
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New acoustic instrument, Image of reflected acoustic pulse, with components from
with cover removed [2] front and back of reflective surface superimposed
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[1] Rice HP, Fairweather M, Hunter TN et al. (2014), ]. Acoustical Society of America 136 (1) 156-169;

Rice HP, Fairweather M, Peakall ] et al. (2014), Chemical Engineering Science 126 745-758; datum
courtesy of lain Smith, M.Sci. student D I STI NCTIV E

[2] Images courtesy of Dr. David Cowell, School of Electronic and Electrical Engineering
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Range corrected backscatter amplitude at 2.25 MHz

. Aim to apply method to suspensions of nuclear-simulant materials to determine
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. Preliminary results agree well with previous measurements

particle concentration field using dual-frequency method [3]
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[2] Rice HP, Fairweather M, Hunter TN et al. (2014), ]. Acoustical Society of America 136 (1) 156-169;
Rice HP, Fairweather M, Peakall ] et al. (2014), Chemical Engineering Science 126 745-758; datum

[3] Hurther D, Thorne PD, Bricault M et al. (2011), Coastal Engineering 58 (7) 594-605
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[4] Images courtesy of Dr. David Cowell, School of Electronic and Electrical Engineering
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. Method offers potential improvement over more

aliasing/bandwidth and near-wall measurements

Ultrasonic transmitters

common Doppler methods in terms of data quality, - I
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[5] Jacobson SA, Denbigh PN and Naude DEH (1985), Ultrasonics 23 (3) 128-132
[6] Bonnefous O, Pesque P (1986), Ultrasonic Imaging 8 (2) 73-85
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Configurations for testing of time-domain velocimetry

Two test configurations used; first was not successful

~30 cm

Mixer

MATLAB code (function “xcorr”) used to compute cross-correlation and delay time between signals
Plastic particles used as scatterers; computed velocities to be compared with Stokes settling

velocities at dg:

_2gd*(S—1)

St_9 Vv

To be combined with pressure-drop measurements and compared with Doppler method in in-line

rheometry method
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. Using methods described here, aim is to fully characterise settling and non-settling, high-
concentration suspensions in terms of velocity and concentration fields, and in-line rheometry at
lower flow rates

. Aim to also measure deposition velocity at higher flow rates using method described in recent
study [7] and particle image velocimetry (PIV) for validation of acoustic data and for near-wall
measurements

. A range of nuclear-simulant materials will be used, e.g. calcium carbonate, magnesium hydroxide
and barytes suspensions, with and without flocculating agents

. Two pipe flow loops, internal diameters D = 60 and 25 mm; flow can be directed in horizontal,

vertical or inclined orientations

Composite photograph of layout of new flow loop laboratory, being commissioned
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