Transitioning of Spent AGR Fuel from Wet to Dry Storage

James Goode

University of Leeds

Supervisors: Prof. Bruce Hanson, Dr David Harbottle

pmjbg@Leeds.ac.uk

April 6, 2017

AGR Fuel Drying

- Large quantities of nuclear fuel has accumulated in storage ponds.
- Fuel can not be stored in ponds indefinitely.
- In many countries dry storage of spent nuclear fuel (SNF) is used as an interim measure.
- Key requirements for dry storage are criticality prevention, integrity maintenance and retrievability.
- All of these are affected by corrosion and hence the **Entry** action with water.

James Goode (University of Leeds)

AGR Fuel Drying

April 6, 2017 2 / 13

Types of Water

ASTM C1553 identifies 2 forms of water.

Bound Water

- Chemisorbed water-Water that is bound to other species by forces whose energy levels approximate those of a chemical bond.
- Physisorbed water-Water that is physically bound to internal or external surfaces of solid material.

Unbound Water

- Free water-Water that in the solid, liquid or vapour state that is not chemically bound to another species
- Trapped water-Unbound water that is physically trapped or contained by the surrounding matrix.

Bound Water

TGA drying of corroded metal.

- Aluminium shows a clear mass drop as the oxide dehydrates.
- No similar peak apparent for SS.

Trapped Water

Sample Production

- Failures of AGR fuel have been attributed to IGSCC.
- A test piece (TP) was produced which had SCC cracks.

Macro Scale Drying Rig

James Goode (University of Leeds)

AGR Fuel Drying

Typical Data Plot

Next Steps

Macro Scale Drying

- Reconfigure rig for flowed gas drying.
- End point determination.

Other

- Long term corrosion work.
- Creation and drying of carbon deposits.

Thank you!

James Goode (University of Leeds)

AGR Fuel Drying

April 6, 2017

Smart cements for chloride / moisture sensing in nuclear concrete assets

Lorena Biondi

PhD student (1st year), CEE, University of Strathclyde MSc Decommissioning and Radwaste Management, University of Oriental Piedmont, Italy MSc Physics, University of Catania, Italy BSc Physics, University of Catania, Italy

Supervisors: Dr. Marcus Perry, Dr. Andrea Hamilton

DISTINCTIVE 3rd Annual Meeting 5th - 6th April 2017 York, UK

Summary

• Introduction:

- → Issue: Structural integrity in nuclear context
- \rightarrow Corrosion of steel rebars in concrete
 - Role of chloride and moisture
- → Monitoring of chloride and moisture

• Overview of the project:

- \rightarrow Novel solution proposed
- \rightarrow Steps of the project

• Experimental work:

- → Methodology details
- → Preliminary results

Conclusions and future work

Jssue: Structural integrity in nuclear context

Structural integrity and stability:

- Important for all types of buildings;
- In particular, structures in nuclear context:
 - Are usually coastal;
 - Underpin safety-critical structures and radiation barriers;
 - Are irradiated by ionizing radiation;
 - Play the role of phisical barrier between radioactive materials and the external environment.

Are made of reinforced concrete

Corrosion of steel rebars

Figure 1 – Temporary waste storage D1, Nuclear power Plant of Garigliano (Ce), Italy.

Figure 2 – Consequences of rebar corrosion.

Orrosion of steel rebars in concrete Orrosion of steel rebars Orrosion of steel r

Role of chloride and moisture

In the normal highly alkaline environment of concrete:

- ✓ pH > 11.5;
- the surface of steel rebars is protected from corrosion by a thin passive oxide film.

Figure 3 – Reinforcing steel covered with the protective oxide film in concrete.

Under certain conditions, **the passive film breaks**, leading to corrosion.

Monitoring of chloride and moisture

Existing methods

Chloride

- Ion selective electrodes enbedded in concrete;
- Fibre optic sensors.

Moisture

- Humidity sensors;
- Electrical resistance sensors;
- Dielectric permittivity sensors.

Monitoring of chloride and moisture

Existing methods

Chloride

- Ion selective electrodes enbedded in concrete;
- Fibre optic sensors.

Moisture

- Humidity sensors;
- Electrical resistance sensors;
- Dielectric permittivity sensors.

- Not suitable for long term monitoring;
- Not accurate enough;
- Don't provide protection and repair to concrete.

Novel solution proposed

New sensing system

Coupled system:

- Smart cements = fly ash geopolymers
- Electrical system = Electrodes, LabVIEW

Figure 6 - Diagram and photograph of the scheme of the whole sensing system, showing a geopolymer surface layer on concrete substrate and the electrodes linked to the LabVIEW software.

Novel solution proposed

New sensing system

Coupled system:

- Smart cements = fly ash geopolymers
- Electrical system = Electrodes, LabVIEW

- Highly-adhesive binders
- Durable
- Chemically resistant
- Electrically conductive

Figure 6 - Diagram and photograph of the scheme of the whole sensing system, showing a geopolymer surface layer on concrete substrate and the electrodes linked to the LabVIEW software.

Novel solution proposed

New sensing system

Coupled system:

- Smart cements = fly ash geopolymers
- Electrical system = Electrodes, LabVIEW

- Highly-adhesive binders
- Durable
- Chemically resistant
- Electrically conductive

Figure 6 - Diagram and photograph of the scheme of the whole sensing system, showing a geopolymer surface layer on concrete substrate and the electrodes linked to the LabVIEW software.

Advantages:

- Affordable;
- Suitable for long term monitoring;
- Non-destructive;
- Combined monitoring and maintenance technology.

Novel solution proposed

New sensing system

Coupled system:

Concrete

- Smart cements = fly ash geopolymers
- Electrical system = Electrodes, LabVIEW

- Highly-adhesive binders
- Durable
- Chemically resistant
- <u>Electrically conductive</u>

Figure 6 - Diagram and photograph of the scheme of the whole sensing system, showing a geopolymer surface layer on concrete substrate and the electrodes linked to the LabVIEW software.

Advantages:

- Affordable;
- Suitable for long term monitoring;
- Non-destructive;
- Combined monitoring and maintenance technology.

Novel solution proposed

New sensing system

Novel solution proposed

New sensing system

Variations of Impedance

Novel solution proposed

New sensing system

- → Steps of the project
 - Making the most suitable geopolymer binder;
 - Putting it in a layer on concrete, with embedded electrodes;
 - Curing it to an uncracked layer.

Figure 8 – Scheme of geopolymer layer put on a concrete samples, with electrodes embedded.

1*st*

 Implementing a LabVIEW code, that could allow to do preliminary tests and measurements.

- Doing different tests in laboratory and field trials varying variables:
 - Chloride and moisture concentration;
 - Ionizing radiation.

- → Steps of the project
 - Making the most suitable geopolymer binder;
 - Putting it in a layer on concrete, with embedded electrodes;
 - Curing it to an uncracked layer.

Figure 8 – Scheme of geopolymer layer put on a concrete samples, with electrodes embedded.

→ PRELIMINARY RESULTS

1*st*

→ Methodology details

 $\frac{L}{A}=0.50$

 $\frac{1}{SS} = 0.40$

SH solution = 10 M

SH

Geopolymer synthesis

- Mixing ٠
 - Fly ash (A)
 - Alkali activator solution (L):
 - Sodium Hydroxide (SH)
 - Sodium Silicate (SS)

Figure 9 – Mixing procedure of geopolymer binder, and ratios between the components.

Sample preparation

- Putting geopolymer binder on • concrete samples of different ages:
 - Less than 3 months old:
 - Over 3 months old:
 - Over 3 years old.
- Putting copper electrodes in some samples: 0.1 mm thick.

Figure 10 - Procedure of putting geopolymer layers on concrete surface.

Curing procedure

- Curing samples:
 - In the Environmental Chamber at 40°C for 3 days;
 - > At room temperature at 23 °C for 28 days.

Figure 11 – Samples in the Environmental chamber.

→ Preliminary results

Samples cured at room temperature (23°C) for 28 days.

Geopolymer layer put on:

For a Low Carbon Futur

→ Preliminary results

Samples cured in the Environmental Chamber at 40°C for 3 days.

Geopolymer layer put on:

> Preliminary results

Cracking could occur in geopolymers placed on newer concretes due to a combination of:

1) Increased water transport away from the geopolymer:

- Dry shrinkage of the top layer
 - \rightarrow Young concrete is porous and gets less porous as it matures.

2) Expansion of the concrete substrate due to water uptake:

- Swelling;
- > A small increase in hydration if there are reaction products left over.

Conclusions and future work

→ Conclusions

Optimistic results:

- <u>uncracked geopolymer surface layer on old concrete.</u>
 - → Advantage for application in existing structures (e.g. nuclear facilities, radwaste repositories, etc...).
- Preliminary qualitative analysis.

Conclusions and future work

→ Conclusions

Optimistic results:

- <u>uncracked geopolymer surface layer on old concrete.</u>
 - → Advantage for application in existing structures (e.g. nuclear facilities, radwaste repositories, etc...).
- Preliminary qualitative analysis.
- Quantitative tests and measurements necessary.

Conclusions and future work

→ Future work

1. Quantitative measurements on the geopolymer + concrete samples:

- Electrical conductivity;
- Porosity;
- Sorptivity;
- Strength;
- Adhesion;
- Imaging.

2. Tests varying variables:

- Ratios between components of geopolymer;
- Molarity of SH;
- Curing temperature;
- Curing time;
- Curing humidity level;
- Radiation (type, activity, distance from the source).

3. Developing the associate EIS interrogation and data processing system in LabVIEW.

4. Assessing the final system in field:

- Beta and gamma radiation;
- Chloride and moisture contamination.

Thank you!

THANK YOU FOR YOUR TIME!

Biondi Lorena University of Strathclyde E-mail: lorena.biondi@strath.ac.uk

Thank you!

THANK YOU FOR YOUR TIME!

Biondi Lorena University of Strathclyde E-mail: lorena.biondi@strath.ac.uk

Thank you!

THANK YOU FOR YOUR TIME!

Biondi Lorena University of Strathclyde E-mail: lorena.biondi@strath.ac.uk

 \rightarrow EIS system

→ EIS theory

In a linear or pseudo-linear system:

→ EIS theory

An electrical double layer exists on the interface between an electrode and its surrounding electrolyte. This double layer is formed as ions from the solution adsorb onto the electrode surface. The charged electrode is separated from the charged ions by an insulating space, often on the order of angstroms.

Charges separated by an insulator form a capacitor so a bare metal immersed in an electrolyte will behave like a capacitor.

- the ionic concentration;
- the type of ions;
- the temperature;
- the geometry of the area in which current is carried.

In a bounded area with area A, length I, the solution resistivity equal to ρ , and carrying a uniform current, the resistance is defined as:

$$R = \rho \, \frac{l}{A} \tag{6}$$

	Component	Current Vs.Voltage	Impedance				
	resistor	E= IR	Z = R				
	inductor	E = L di/dt	Z=jwL				
	capacitor	I = C dE/dt	Z=1/jwC				
E	Figure 14 – Common electrical elements of a circuit						

→ XRD spectrum

Sample of geopolymer put in concrete, cured in the environmental chamber at 40 °C.

	Class F %	Class C Lignite based (%)
SiO ₂	47.2 to 54	18 to 24.8
Al ₂ O ₃	27.7 to 34.9	12.1 to 14.9
Fe ₂ O ₃	3.6 to 11.5	6.3 to 7.8
CaO	1.3 to 4.1	13.9 to 49
Free lime content	0.1	18 to 25
MgO	1.4 to 2.5	1.9 to 2.8
SO ₃	0.1 to 0.9	5.5 to 9.1
Na ₂ O	0.2 to 1.6	0.5 to 2
K ₂ O	0.7 to 5.7	1 to 3

Figure 15 – Chemical composition for fly ashes.

Phase	Mean %	Min. (%)	Max (%)
Amorphous	59	30	78
Mullite	19	7	46
Haematite	7	2	15
Magnetite	6	2	10
Quartz	5	1	12
Carbon	4	1	13

Figure 16 – Phase composition of UK fly ashes.

For a Low Carbon Future

Novel solution proposed

New sensing system

Interface Analysis Centre Materials research for Energy Engineering and the Environment

Profile of corroding uranium – Camera 4

Profile of corrosion products – Camera 4

Online synchrotron-based uranium corrosion experiments

Sample M1

Sample NW1

Sample M1

Sample NW1

Sample NW2

Interface Analysis Centre Materials research for Energy Engineering and the Environment

Sample M1

Sample NW1

Sample M1

Online synchrotron-based uranium corrosion experiments

Online synchrotron-based uranium corrosion experiments

Online synchrotron-based uranium corrosion experiments

Online synchrotron-based uranium corrosion experiments

The effects of colloidal silica based grouts on Sr and Cs speciation – present and future research

Pieter Bots¹, Rebecca Lunn¹, Grainne El Mountassir¹, Matteo Pedrotti¹, Timothy Payne² and Joanna Renshaw¹

- ¹ Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
- ² Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales 2232, Australia

DISTINCTIVE Annual Meeting 5th/6th April 2017 York

Containment of legacy wastes

- Around the world sites exist with radioactive wastes such as
 - Sellafield (UK)
 - Hanford (USA)
 - Little Forest Legacy Site (Australia)
- For long term management radionuclide migration through the subsurface need to be inhibited
- Grouts have large potential for applications in the long term management of such legacy sites
 - Such grouts need to decrease the potential for radionuclide migration

GROUT APPLICATIONS

- Vertical and horizontal hydraulic barriers
- Waste encapsulation
- Ground sealing
- Mechanical improvement
- Combinations

The Little Forest Legacy Site (LFLS)

- Operational for low level waste disposal: 1960-1968
- Unlined trenches covered with ~1m soil
- Low levels of radioactivity found in surface runoff, soil and vegetation

Payne et al. Environmental Science & Technology (2013) 47 13284-13293

Strontium and Caesium

- Caesium-137 and strontium-90 are short lived fission products
- Have been detected in soil, surface runoff and vegetation

Cs and Sr geochemistry

Cs

- Cs⁺ interacts with illite and other clays
 - into the hydrated interlayer
 - surface complexes on basal plane

Sr

- Sr²⁺ adsorption onto metal oxides and silicates
- SrCO₃ precipitates under alkaline conditions

Cs and Sr depth profile

Colloidal Silica Grouts

- Silica sol:
 - 2 150 nm SiO2 nanoparticles; 15 40 wt%
- Gelling induced by accelerant:
 - NaCl, CaCl₂, KCl
- Grouted colloidal silica gel creates hydraulic barrier
- Limited immobilization of anions such as CrO₄²⁻
- How do these grouts affect the geochemistry and mobility of radionuclides:
 - Cs-137, Sr-90, Uranium etc.

Moridis et al. (1995) Containment Technology Workshop.

ground surface

Tantemsapya and Meegoda *Environmental Science and Technology* (2004) **38** 3950-3957

Adsorption Experiments

- Soil and waste components based on XRD and historical waste records:
 - **Soil:** Illite/smectite, Kaolinite, Anatase (TiO₂), Goethite (FeOOH), Quartz
 - **Waste:** Cellulose, Magnetite (Fe_3O_4), Gibbsite (Al(OH)₃), PVC
- Geochemistry (to represent the groundwater at LFLS):
 - 10 mM NaCl; pH 4 8

Procedure:

- Equilibration of 10g/l with solutions until pH stable
 - Spiking the experiment with Sr, Cs or Sr and Cs
- After 48h, solutions were sampled and analysed by IC for Cs⁺ and Sr²⁺

Soil depth (m)

ch Councils UK

Enera

For a Low Carbon Future

Cs and Sr adsorption

- Neither Sr nor Cs adsorbed to PVC, goethite, gibbsite or quartz
- Strontium:
 - Illite/smectite > Anatase > Kaolinite
 - = Magnetite = Cellulose
- Cesium:
 - Illite/smectite >
 Kaolinite > Anatase
 = Magnetite ≥
 Cellulose
- More Sr adsorbed than Cs
- Decreased Cs adsorption in the presence of Sr

Concentration of Cs and Sr after 48h equilibration. Dark symbols and lines: Cs or Sr; light symbols and lines: Cs and Sr

Cs and Sr in soil and wastes

- Adsorption of Sr and Cs to soil
- Limited Cs adsorption to waste
- Weighted averages (dashed lines) did not simulate the experiments
 - No easy prediction of behaviour of Sr and Cs at LFLS
 - No natural organic matter in experiments

Concentration of Cs and Sr after 48h equilibration. Dark symbols and lines: Cs or Sr; light symbols and lines: Cs and Sr

- Adsorption and Desorption
- Adsorption of uranium(VI)
- Effects of Cs and Sr on the adsorption of U(VI) (and vice versa)
- Desorption of Sr, Cs and U(VI) from selected solids and mixtures
- Desorption of Sr, Cs and U(VI) from soil and waste mixtures embedded in colloidal silica grout

Adsorption experiments performed

- Simulated soil
- pH 7
- After 48h of equilibration:
 - Adding 30 ml:
 - Accelerant based on a 3h gel time
 - 0-233 mM NaCl
 - 0-33 mM CaCl₂
 - 0-138 mM KCI

Colloidal silica

- 0-7 wt%
- Method development analysing ≤ 20ppm Cs and Sr in such saline solutions is ongoing

- X-ray absorption spectroscopy (XAS)
- XAS
 - Synchrotron radiation technique
 - Non-destructive
 - Element specific
 - Provides information on the local coordination environment
- Proposal for beamtime has been resubmitted for XAS experiments on Sr and Cs
 - Adsorbed to soil and waste components
 - Adsorbed to soil and waste mixtures
 - Soil and waste mixtures embedded in grout

- Synchrotron based X-ray CT experiments
 - Beamtime proposal funded by Diamond Light Source (5 days)

Conon of colloi

es

g

OMNICOLL Fraction Collector

its on

- 3D imaging technique based on density diffences
- In-situ time resolved experiments
- Real-time imaging of injection of colloidal silica grout
- Determining the effects of solid matrix and porewater on injection behaviour
- Elemental analyses
- Using fluorescence above and below absorption
- Experiments on prereacted experiments with Sr. S and U
 - Before and after injection of colloidal s^{iv} grout
- Determining the electron of the distribution of New Era Syringe Pump

Future work 4

Test trenches at the Little Forest Legacy Site Trenches with similar dimensions to the legacy site to:

- Improve understanding of hydrology of trenches, particularly the presence of an excavated trench, loosely filled, and covered with soil
- Understand the evolution of the waste materials
 - Changes in chemical and physical properties of these components and radionuclides in them
 - What could cause subsidence in the trenches
- Understand the effects of the trench (excavation) on the local hydrology, including its behaviour when saturated
- Test proposed options for remediation, e.g.:
 - Engineered cover
 - In-situ grouting

Summary and conclusions

- Comprehensive adsorption experiments performed
- Illite/smectite is the strongest adsorbent
- Understanding the adsorption in complex soils requires further understanding

Ongoing and future work

- Desorption
- Imaging
- X-ray Absorption Spectroscopy
- Test trenches at the Little Forest Legacy Site

Thank you for your attention

Gas Generation from Water on the Surface of PuO₂

Luke Jones University of Manchester

DISTINCTIVE 3rd Annual Meeting 5-6th April 2017 National Railway Museum, York

Outline

- Background
- Previous experimental work
- This project
- Further work

Theme 2 Background

- Decades of reprocessing SNF leads to Pu stockpile
- Stored in multi canister system as PuO₂
- Different fuel sources / different storage conditions
- Several mechanisms for canister pressurisation:
 - He accumulation
 - Radiolytic degradation of organics
 - Steam generation

Radiolysis of adsorbed water

• H_2 generation from PuO_2/H_2O chemical reaction

Previous Work

- Investigating H₂ production
- Undertaken by NNL Radiochemistry team
- PuO₂ from Thorp and Magnox product streams
- Magnox product calcined to reduce specific surface area
- Different RH environments
- N₂ and air glovebox atmospheres
- Ambient temperature
- Al foil cap for select experiments

Trend 1 – Linear H₂ production

Magnox PuO₂ calcined at 950 °C in 50 %RH

MANCHESTER

The University of Manchester Dalton Nuclear Institute

Trend 2 – Anomalous H₂ production

The University of Manchester Dalton Nuclear Institute

MANCHESTER

Trend 3 – Effect of Al foil

Magnox PuO₂ calcined at 900 °C in 25 % RH

Effect of glovebox atmosphere

Magnox PuO₂ calcined at 900 °C in 50 %RH

Trend 4 –

Conclusions

- Linear H₂ production
- Increased H₂ production rate with increasing RH
- AHP observed at low RH
- Al foil increased H₂ rate for high RH samples
- Changing atmosphere has different effects on each product

This Work

- Thorp and Magnox product 'as received'
- Argon glovebox
- Parallel samples in air/N₂ glovebox
- Au foil experiments
- Characterisation of oxide powder
- Aged PuO₂ samples (potentially)

Experimental Matrix (tbc)

Ar glovebox

RH %	25	50	75	95
Magnox	X	x	x	X
Thorp	X	x	x	X

Air/ N_2 glovebox

RH %	25	50	75	95
Magnox	X	x	X	X
Thorp	x	x	x	X

- another 8 samples to allocate across both g/boxes

Progress

- Material on order from plant
- Paperwork signed off
- *Hands in the box*

Further Work

- Longer timescale experiments
- Increase S/V ratio to better simulate canisters
- Quantification of O₂
- In-situ gas sampling
- Metal reaction vessels
- Headspace measurements from actual storage cans

Acknowledgements

- Robin Orr (NNL)
- NNL Radiochem. team
- Howard Sims (NNL)
- Paul Cook, Jeff Hobbs and Helen Steele (SL)
- Simon Pimblott
- NDA for facilities costs
- EPSRC grant code EP/L014041/1

The University of Manchester Dalton Nuclear Institute

Adventures in Actinide Science

Dr Tamara Griffiths

DISTINCTIVE Conference York, UK 06th April 2017

- Worked at NNL since November 2013
- Research Associate within the Radiochemistry team.
- Based at NNL-Central Laboratory, Sellafield.

Background

- Masters of Chemistry (2004 2008)
 → The University of Manchester
- Interest in radiochemistry stemmed from MChem project
- \rightarrow Dr Nicholas Bryan
- \rightarrow Centre for Radiochemistry Research
- \rightarrow Effect of Humic Substances on Radionuclide Migration

Background

- PhD Inorganic Chemistry (2008-2012)
- \rightarrow The University of Manchester
- → Dr Clint Sharrad
- → Dr Mark Sarsfield (NNL, Industrial Supervisor)
- \rightarrow PhD funded by NDA
- \rightarrow Desire to further study chemistry of the actinides
- \rightarrow Investigating Heterogeneous Complexes Relevant to Sellafield Waste Ponds and Solvent Reprocessing Techniques.

Pond chemistry is complex

Understanding the behaviour of actinide species in solution is important when disposing and processing nuclear waste

Actinide Ternary Complexes

- Desire to study 'exotic' isotopes (²⁴¹Am and ²⁴⁸Cm)
- Seconded to Idaho National Laboratory
- Seconded to National Nuclear Laboratory

→Gamma radiolysis of neptunium-TBP containing systems

Post Doctoral Research Associate (2012-2013)

- \rightarrow Dr Clint Sharrad and Prof. Francis Livens
- \rightarrow Studying ^{237}Np redox behaviour in PUREX
- Seconded to KIT-INE, Germany
- \rightarrow NMR of plutonium-TBP containing systems

- Applied directly to NNL early 2013
- \rightarrow Impressed with world-class facilities
- \rightarrow Opportunity to work alongside the world-leading experts \rightarrow Want to further develop my knowledge/interest in studying chemistry of actinide ions
- Interviewed July 2013
- Commenced November 2013 (direct intake)
- Research Associate within Radiochemistry Team

Radiochemistry Team

Chris Mason, Central Laboratory, Sellafield

Team's key capabilities:

- Suite of Pu gloveboxes

 → highly skilled glovebox operators
 → >100 man years of experience

 Actinide Separations Advanced
- Actinide Separations, Advanced Reprocessing & Flow Sheet Development
- Plutonium Processing and Storage

Team's facilities and equipment of note:

- PuMA Labs (suite of Pu gloveboxes; fumehoods; spectroscopic and electrochemical capabilities)
- High Inventory Facility (Pu can processing and packaging; SAA; pXRD; SEM; metallography; ceramography; gas chromatography; TGA)

ASGARD

- Carbide fuel is being considered for use in Gen IV reactors.
- Two main options for aqueous reprocessing carbide fuel:
- 1. Direct dissolution of the carbide.
- 2. Oxidative pre-treatment to an oxide followed by dissolution.

ASGARD

UC Pellet Dissolution

Organic Destruction

Luminescence Spectroscopy

Renew the Luminescence Spectroscopy capability.

Develop tool to study Am(III) speciation with TODGA ligand.

For optimising solvent extraction processes

What is luminescence?

Light energy Light emitted dkas4s.a

Am(III)-TODGA Titration

The EU 7th Framework Programme, TALISMAN, enabled a collaboration to be established between NNL and CEA.

- 3 months secondment for two early career researchers:
- Tamara Griffiths (NNL) to CEA Marcoule Nuclear site.
- Arnaud Deroche (CEA) to NNL Central Laboratory.

- Joint NNL-CEA study of Cation-Cation Interactions (CCIs).
- CCIs tend to be characteristic of pentavalent actinide ions.

The Np(V)-U(VI) CCI was studied in organic solution (TBP/TPH).
 Np⁺ == 0 ·······
 U²⁺
 The Np(V)-U(VI) CCI may synergistically enhance the extraction of Np(V).

Overall aim of addressing the control of Np in the development of advanced reprocessing routes.

The Np(V)-U(VI) CCI was observed using electronic absorption spectroscopy

Stability Constant Determination for the Np(V)-U(VI) CCI:

Contribute to further understanding of actinide complexation and redox chemistry under solvent reprocessing conditions.

Biogeochemistry

ESA Space Batteries

- Enjoy working on multiple research projects.
- Enjoy the opportunity to present my work to a national and international audience.
- Opportunity to be industrial PhD supervisor.
- Continue to strengthen links between NNL and universities/other research institutes world-wide.
- Enthusiastic, proactive, continually looking for opportunities to develop.

Acknowledgements

NNL Radiochemistry Team

- Chris Mason
- Dr Mark Sarsfield
- Dr Chris Maher
- Prof. Robin Taylor
- Dr Sean Woodall
- Dr Mike Carrott
- Dr Dan Whittaker
- Stacey Reilly
- Catherine Campbell
- Hannah Colledge
- Louise Walton
- Colin Gregson
- Josh Holt
- Cheryl Carrigan
- Kevin Webb
- Bliss McLuckie

University of Manchester

- Dr Clint Sharrad
- Dr Nick Bryan
- Prof. Francis Livens
- Dr Louise Natrajan
- Dr Kate Tucker
- Prof. Melissa Denecke

INL

- Dr Leigh Martin
- Dr Peter Zalupski

KIT-INE

- Dr Peter Kaden
- Dr Andreas Geist

Engagement and impact with a distinctive edge

Neil Hyatt University of Sheffield Email: n.c.hyatt@sheffield.ac.uk

DISTINCTIVE Annual Meeting 04-06 April 2017 York

Wednesday 22nd – Friday 24th June 2016

Halifax Hall Hotel, Sheffield

For all DISTINCTIVE PhD students & PDRAs

Decommissioning, Immobilisation and Storage soluTions for NuClear wasTe InVEntories

DISTINCTIVE media and public engagement summer school

Halifax Hall, Sheffield, June 2016

Wednesday 22 nd June	Thursday 23 rd June	Friday 24 th June
Participants arrive in time for lunch	0930: Making the most of our media opportunities (Mentor Media) Basic Media Skills <i>The Dining Room (caberet – 40)</i>	0900: Engaging with policy makers Matt Billson (Energy 2050) 0915: Popular Science Writing Vikki Cantrill (Freelance Writer) Mary Cruse (Freelance Writer, Diamond) Dan Cooper (The Nuclear Hitchiker) The Dining Room (caberet – 40)
	1100: Tea & Coffee	1030: Tea & Coffee
	1130: "Selling your story" using the T.R.U.T.H. principles (Mentor Media) <i>The Dining Room (caberet – 40)</i>	1100: Popular Science Writing Exercise <i>The Dining Room (caberet – 40)</i>
1230: LUNCH	1230: LUNCH	1230: LUNCH
1330: Welcome and setting the scene	1330: Putting the skills into practice (Mentor	1400: "Dragon's Den"
1400: Public engagement session Mike Wood (University of Salford) Laura Holland (Diamond Light Source, via skype)	Media) The Dining Room (caberet – 40)	Exercise on public engagement group activity Round 1 The Dining Room (caberet – 40)
The Dining Room (theatre – 40)	1500, Top & Coffee	1500: Top & Coffor
1500: Hetal shask in	1500. Tea & Collee	1500. Tea & Collee
1600: Group work on public engagement	Ennis Room (caberet - 20); Library (caberet - 20)	Exercise on public engagement group activity Round 2
Library (Caberet - 20), The Dining Noom (cheatre - 40)	1630: Q&A with Tom Sheldon, Science Media Centre The Dining Room (caberet – 40) 1700: Group work on public engagement	1545: Winners announced
Virtual Chernobyl: Ennis Room	Ennis Room (caberet - 20); Library (caberet - 20)	
1830: DINNER	1900: DINNER (with after dinner speaker – Tim Yeo)	1600: CLOSE
1930: Group work on public engagement Library (caberet - 20); The Dining Room (theatre – 40)		

ch Councils UK

Decommissioning, Immobilisation and Storage Solutions for Nuclear Waste Inventories

DISTINCTIVE

Online / real-time stakeholder engagement

- Deliberatorium platform launched in May 2016 but uptake was poor
- The concept was developed at MIT: a social computing platform designed to help people combine their insights to find solutions for complex multi-disciplinary problems.
- It was originally developed for large scale discussions of climate change policy, and we are applying it here to radioactive waste.
- Members of the DISTINCTIVE consortium were strongly encouraged to take part, and engage with a broader network of stakeholders that will also contribute.

Online / real-time stakeholder engagement

- Matthew Cotton (now at York) will be running a face to face Deliberatorium session at the annual meeting
- Participants contribute either by posting *issues* (technical / social questions that need to be answered), *ideas* (possible answers for a question), or *arguments* (statements that support / detract from an *idea* or *argument*).
- These are arranged into branching trees of arguments
- This setup has the advantage of allowing different users different roles. One user can propose an idea, a second raise an issue concerning how some aspect of that idea can be implemented, and a third propose possible resolutions for that issue.
- Matthew will then produce an 'argument map' which we will report as a deliverable of the project, and work this up into a social science publication (for a journal such as *Science Communication*)

DISTINCTIVE documentary film

Key messages for the film:

• Nuclear decommissioning, waste management and waste disposal is a complex and interdisciplinary science and engineering challenge

• Research needs to be timely and goal oriented, but also of a fundamental nature, of high quality, and independent, to underpin technology selection, optimisation and deployment

• The UK project may take a century to complete, so a pipeline of highly skilled researchers, as delivered by the project, is essential.

Segment	Message	Time?
1	Big picture: UK nuclear decommissioning, waste management,	1.00
	disposal	
	To camera with cutaway and stock footage	
2	AGR, Magnox & Exotic Fuels (9 projects)	1.00
	To camera with lab cutaway footage	
3	PuO2 and Fuel Residues (12 projects)	1.00
	To camera with lab cutaway footage	
4	Legacy Ponds & Silos (21 projects)	1.30
	To camera with lab cutaway footage	
5	Structural Integrity (9 projects)	1.00
	To camera with lab cutaway footage	
6	Research translation and impact (NDA / Sellafield Ltd)	1.00
	To camera with stock cutaway footage	

International Festival of Glass 2017

Bank Holiday weekend: 25-28 August Footfall of 13,000 visitors per day Need a presentation team of four volunteers

Invited participation – glass applications for radioactive waste treatment

1. Public lecture:

Prof. Neil Hyatt, Engineering radioactive waste glasses for the future

2. Interactive display:

- Pop up graphic display on radwaste glass
- DISTINCTIVE docu-film
- Radwaste glass educational film
- Table with glass artefacts
- Demonstration Prince Rupert drops

US Nuclear Waste Technical Review Board

Invited poster presentation at the US Nuclear Waste Technical Review Board Richland, WA on June 21, 2017.

Expert participants will advise the NWTRB on the state of the art understanding of radioactive waste glass mechanisms

This will shape US radioactive waste disposal strategy and associated research priorities.

Participants will include DOE, the Washington State Department of Ecology and other stakeholders, DOE site contractors, and national laboratories, and the local community which will be the host for the US Low Activity Waste Glass repository (on the Hanford site).

The University of Sheffield has been invited to participate in the meeting and contribute an expert poster on the understanding of nuclear waste glass alteration and its impacts on disposal safety, developed through DIAMOND and DISTINCTIVE

Engaging with policy makers

Objectives:

- Raise profile of project in government departments and Westminster
- Promote research outcomes and impacts
- Provide opportunity for consortium researchers to engage policy makers

Proposed event

All Party Parliamentry Group on Nuclear Energy (2017)

DISTINCTIVE sponsored discussion / poster event over lunch; sponsor Tim

Yeo – discussion ongoing with David Mowatt MP (APPG Vice Chair)

