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* The UK'’s stock of civil plutonium is stored as PuO, powder in
multi layer steel cans in Sellafield.

* Under certain circumstances, gas generation may occur within
the cans, with consequent pressurisation.

“‘worker performing general housekeeping and relocating storage
cans in the interim storage vault noticed a plutonium bearing
storage can was bulging on both ends”

Lawrence Livermore National Laboratory 1994

»  Several proposed routes to gas production, including:

(i) steam produced by H,O desorption from hygroscopic PuO, due
to self-heating

(i) radiolysis of adsorbed water

(i) generation of H, by reaction of PuO, with H,O, producing a
“postulated” PuO,,, phase

—_

—Model the interaction of water on PuO, surfaces at the atomic level
- method development
- initial results
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All involve PuO,/H,0
interactions and are
complex, inter-connected
and poorly understood
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» Density Functional
Theory

- VASP 54.1
- PAW-pseudopotentials
- Plane wave basis set

+ Kk-point sampling of 1st
BZ

* Spin-polarised
- DFT+U = PBE+U
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 Surfaces are modelled
using a repeating slab of
24 AnO, units with 18 A
of vacuum between each
slab.

 Water is adsorbed on
both sides of the slab to
ensure the system has
no net dipole moment.
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Molecular Dissociative
25% coverage = ¥ ML
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Dissociative

Molecular
50% coverage = ¥2 ML
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Dissociative

Molecular

Ya ML

/5% coverage
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Molecular Dissociative
100% coverage =1 ML
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@0.25ML | @ 0.50ML | @ 0.75 ML | @ 1.00 ML
H,O / nm? 1.95 3.89 5.84 7.78
mg / m? 0.058 0.12 0.17 0.23
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Uo, + H,0 053 -053 -053 -0.49
UO, + OH + H 4.0 050 -0.41 -029 -0.15
U0, + H,0 [1] 4.0 061 N/A  NA  -0.60

UO,+OH+H[1] 4.0 068 N/A  NA  -0.32

[1] T. Bo, J. Lan, Y. Zhao, Y. Zhang, C. He, Z. Chai and W. Shi, J. Nucl. Mat. 454 (2014) 446-454
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Uo, + H,0 053 -053 -053 -0.49
UO, + OH + H 4.0 050 -041 -029 -0.15
CeO, + H,0 [2] 5.0 056 -0.60 N/A  -0.57

CeO,+OH+H[2] 5.0 059  N/A N/A  -0.15

[2] M. Molinari, S. C. Parker, D. C. Sayle, and M. S. Islam,
The Journal of Physical Chemistry C 2012 116 (12), 7073-7082
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Distance (A) uo, CeO, [2]

Hy — Oys 1.96—2.28 1.99 - 2.13
Us/Ce,s— 0Oy 262-2.69 2.62
U,/ Ces—OyHy 2.18-226  2.22
U,/ Ces—OiHy 2.33-2.44  2.41
O,sHy—OyHy 1.61-2.39  1.65

[2] M. Molinari, S. C. Parker, D. C. Sayle, and M. S. Islam,
The Journal of Physical Chemistry C 2012 116 (12), 7073-7082
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Molecular
25% Coverage = %2 ML
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Molecular
50% Coverage = 2 ML
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Molecular
100% Coverage =1 ML
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Dissociative
25% Coverage = ¥4 ML
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Dissociative
50% Coverage = 2 ML
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Dissociative
100% Coverage = 1 ML
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uo, (110) | UO, (110) | UO, (110)
Coverage - e 2
@0.25ML | @ 0.50 ML | @ 1.00 ML
H,O/nm?  1.17 2.35 4.70
mg / m2 0.035 0.070 0.14
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UO, + H,0 -0.93 -0.74 -0.65
UO, + OH + H 4.0 139  -1.05 -1.00
CeO, + H,0 [2] 5.0 -0.85 -0.76  N/A

CeO,+OH+H[2] 5.0 112 -1.00 -0.21

[2] M. Molinari, S. C. Parker, D. C. Sayle, and M. S. Islam,
The Journal of Physical Chemistry C 2012 116 (12), 7073-7082
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Distance (A) uo, CeO, [2]

Hy, — Oys 219-226  2.07
Usg/Ceig—0, 2.73-279  2.67
Usg/Ceig—OyHy 217 2.14
U/ Ce,s—OHy 259  2.48-258
O,sHy — OyHy 2.36 1.92

[2] M. Molinari, S. C. Parker, D. C. Sayle, and M. S. Islam,
The Journal of Physical Chemistry C 2012 116 (12), 7073-7082
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Studying the actinide oxides using DFT remains a
challenge.

Careful use of the DFT+U method allows calculation of
structural and electronic properties.

First results on the UO,(111) and (110) surfaces suggest
molecular adsorption on the (111) surface and
dissociative adsorption on the (110) surface.

Future work will focus on adsorption energies on the
(100) uranium dioxide surface, followed by reduced
surfaces.
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Surface
uoO, (111) | UO, (110) | UO, (100)

meV /A2  40.76 65.69 82.79
J/m2 0.65 1.05 1.33
J/m2[3]  0.78 1.05 1.47

[3] Zs. Rék, R.C. Ewing, and U. Becker, Surface Science, 608, (2013), 180-187
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