Grain Boundary Damage Mechanism in AGR Claddings under Irradiation

C. Barcellini*1, S. Dumbill², and E. Jimenez-Melero¹

¹School of Materials, University of Manchester ³National Nuclear Laboratories, Central Laboratory (*Correspondence: <u>chiara.barcellini@postgrad.manchester.ac.uk</u>)

DISTINCTIVE Theme 3rd Annual Meeting National Railway Museum, York 5th - 6th April 2017

The University of Manchester Research Council Dalton Nuclear Institute

EPSRC

NATIONAL NUCLEAR

Sensitisation with charge particles

Sensitised specimens can be produced using intense beams of protons or heavy ions

ADVANTAGES:

- user-adjustable radiation
- similar microstructure
- reduced induced radioactivity

PhD main Objectives:

- access irradiation conditions
- study microstructures produced during irradiation

Irradiated AGR Cladding Material Preparation for TEM

C. Barcellini^{*1}, S. Dumbill², and E. Jimenez-Melero¹

¹School of Materials, University of Manchester ³National Nuclear Laboratories, Central Laboratory (*Correspondence: <u>chiara.barcellini@postgrad.manchester.ac.uk</u>)

DISTINCTIVE Theme 3rd Annual Meeting National Railway Museum, York 5th - 6th April 2017

Contents

1 Introduction

- 2 Sample Production
- **3** Sample Preparation for TEM
- 4 Experimental Results
- 5 Conclusion & Future Work

Contents

1 Introduction

- 2 Sample Production
- 3 Sample Preparation for TEM
- 4 Experimental Results
- 5 Conclusions & Future Work

Materials and Methods

Specimen Preparation

20Cr25Ni **Nb-stabilised** S.S.

- cold work
- 40min at 930°C ►

Annealed specimen

irradiation

NATIONAL NUCLEAR

Irradiated specimen

- austenitic matrix
 - composition -> SEM & TEM ►
 - g.b -> SEM/EBSD & TEM
 - texture -> SEM/EBSD
- second phases ►
 - composition -> SEM & TEM ►
 - texture -> SFM/FBSD ►

- austenitic matrix
 - composition -> SEM & TEM
 - q.b -> SEM/EBSD & TEM
 - texture -> EBSD
- second phases
 - composition -> SEM & TEM

Engineering and Physical Sciences Research Council Dalton Nuclear Institute

DISTINCTIVE

Irradiated Sample Production

Examples of Bragg Curves

Specimen Preparation

20Cr25Ni Nb-stabilised s.s.

- cold work
- 40min at 930°C

Annealed specimen

irradiation

NATIONAL NUCLEAR

Irradiated specimen

- austenitic matrix
 - composition -> SEM & TEM
 - ▶ g.b -> SEM/EBSD & TEM
 - texture -> SEM/EBSD
- second phases
 - composition -> SEM & TEM
 - texture -> SEM/EBSD

- austenitic matrix
 - composition -> SEM & TEM
 - ▶ g.b -> SEM/EBSD & TEM
 - texture -> EBSD
- second phases
 - composition -> SEM & TEM

The University of Manchester Dalton Nuclear Institute DISTINCTIVE

Characterisation of Irradiated Materials

- Routine direct imaging
 - ► ≈10⁵ magnification
 - ► \$1nm resolution
- EDX and EELS

- structural changes
- local chemical changes
 compositional changes

SAMPLE REQUIREMENTS

electron-transparency

Contents

EPSRC

Research Council

Engineering and Physical Sciences

NATIONAL NUCLEAR

Focused Ion Beam

Dual Beam Focused Ion Beam:

Ga Ion Beam

- Emission of secondary electrons -> FIB Imaging
- Sputtering of substrate atoms -> FIB Milling
- Chemical interactions -> FIB deposition

Electron Beam

- Emission of secondary electrons -> SEM Imaging
- Chemical interactions -> SEM deposition

Contents

1 Introduction

- 2 Sample Preparation for EM
- 3 Experimental Results
- 4 Conclusions
- 5 Future Work Work

The University of Manchester Dalton Nuclear Institute Engineering and Physical Sciences

The University of Manchester Dalton Nuclear Institute EPSRC NATIONAL NUCLEAR

Characterisation of Heat Treated Specimen

e University of Manchester Briterie Dalton Nuclear Institute

EPSRC Engineering and Physical Sciences Research Council

The University of Manchester Dalton Nuclear Institute EPSRC NATIONAL NUCLEAR

Focused Ion Beam on Irradiated Material

University of BRISTOL

20Cr25Ni Nb-stabilised s.s. heat treatment: **40min 930°C** irradiation: **0.3dpa at 420°C**

FEI Helios NanoLab 600 with three-

axis micromanipulator, Oxford Inst X-

Max50 EDS, 7nm resolution platinum

It can be used for the preparation of **active**

deposition and force measurement.

samples

The University of Manchester Dalton Nuclear Institute EPSRC NATIONAL NUCLEAR Engineering and Physical Sciences Research Council

Experimental Results

Focused Ion Beam on Irradiated Material

Second Phase: Nb(C,N)

- 0° 100nm of Pt by e.b. 10kV 1.4nA
- 52° 100nm of Pt by i.b. 30kV 26pA

Cross Section and Thinning

52° with i.b. 30kV 20nA for all sides 53.5° or 50.5° with i.b. 30kV 9nA

Lift Out & Final Cleaning

0° undercut with i.b. 30kV 2.7nA 0° lamella attached to the grid 53.5° with i.b. 30kV 0.9nA 60.4° with i.b. 5kV 71pA

SEM images courtesy of D. Xander Warren and Dr. Ian Griffiths, Interface Analysis Centre, School of Physics, University of Bristol

EPSRC

Engineering and Physical Sciences

Experimental Results

Par FLow Garden Peters

Characterisation of Irradiated Sample

Research Council

The University of Manchester

Dalton Nuclear Institute

Focused Ion Beam on Un-irradiated Material

Heat Treaded Specimen:

as a benchmark for assessing the damage introduced by the Ga beam

High Angle Grain Boundary

- Pt deposition
- cross section
- ► lift out
- ► final cleaning

SEM images courtesy of D. Xander Warren and Dr. Ian Griffiths, Interface Analysis Centre, School of Physics, University of Bristol

University of

Experimental Results

Characterisation of Heat Treated Specimen

The University of Manchester Dalton Nuclear Institute EPSRC NATIONAL NUCLEAR Engineering and Physical Sciences Research Council

Contents

1 Introduction

- 2 Sample Preparation for EM
- **3** Experimental Results
- 4 Conclusions
- 5 Conclusions & Future Work

Conclusions

- State-of-the-art techniques has been combined in order to produce, prepare and analyse radiation damage in AGR cladding material.
- The feasibility of FIB preparation for heavy ion irradiated specimen has been investigated
 - a heavy ion irradiated TEM sample has been prepared and the characterisation has started
 - a heat treated TEM sample has been prepare and it will be use to characterise the Ga beam damage

Contents

1 Introduction

- 2 Sample Preparation for EM
- **3** Experimental Results
- 4 Conclusions
- 5 Future Work

Future Work

- Keep on working on the FIB preparation of heavy ion irradiated specimens.
 - find the perfect "recipe" for AGR cladding material in order to minimise the induced damage.
- TEM/EDX to check local changes in composition
 - does the Ga beam induce segregation?
- Preparation of proton irradiated TEM specimen using mechanical/electrolytical preparation
- Keep on with the characterisation of the radiation damage

Conclusions & Future Work

The University of Manchester Dalton Nuclear Institute

Thank you for your attention

Direct mass analysis of water absorption onto ceria and urania thin films

Dominic Laventine Colin Boxall Lancaster University

Distinctive April, 2017 Annual Meeting, York

- ~250 tonnes of separated Pu currently stockpiled worldwide.
- ~50% in long-term storage in UK whilst the Government develops its options
- Interim storage of PuO₂ involves sealing in inert steel containers.
- Under certain circumstances, these gas cans may pressurise; this must be avoided in practice.
- Need to understand how the structure and properties of PuO₂ change with time under storage conditions (e.g. in the presence of H₂O).

- 5 routes to gas production have been suggested:
 - (i) Helium accumulation from α decay
 - (ii) Decomposition of polymeric packing material;
 - (iii) H_2O desorption (steam) from hygroscopic PuO_2
 - (iv) Radiolysis of adsorbed water

(v) Generation of H_2 by chemical reaction of PuO_2 with H_2O , producing a postulated PuO_{2+x} phase.

- The last 3 processes all involve PuO₂/H₂O interactions and are complex, inter-connected & poorly understood.
- Haschke has suggested a reaction: $PuO_2 + H_2O \rightarrow PuO_{2+x} + H_2$ This has been disputed on thermodynamic grounds.
- Experimental methods have been employed to determine extent of H₂O adsorption, typically through measurement of pressure changes and use of the ideal gas equation to indirectly determine water adsorption at the plutonium oxide surface.

Aims

Current models suggest water is initially absorbed onto metal oxides as a chemiabsorbed monolayer followed by multiple, physi-sorbed layers (with possible intermediate layers of differing binding energies).

- Study the interactions of plutonium oxide and analogues with water.
 - Ceria
 - Urania
 - Thoria
 - Plutonium oxide
- Use of quartz crystal microbalance methodology to experimentally determine:
 - The number of monolayers of water bound to the surface
 - The enthalpy of binding of the different layers.

4
- The QCM measures in-situ mass changes at the surface of a piezoelectrode. Changes in mass, due to oxide formation or dissolution at the electrode surface or adsorption/desorption of gases, result in resonant frequency changes of the quartz crystal.
- Changes in frequency can be related to changes in mass through the Sauerbrey equation:

$$\Delta f = -\left(\frac{n{f_0}^2}{A\sqrt{\rho_q\mu_q}}\right)\Delta m$$

- Knowing the surface area of the metal oxide layer and the mass of water absorbed allows the number of layers to be accurately calculated.
- The differences in temperature at which water absorption/desorption occurs allows the thermodynamics to be determined, indicating which layers are chemi- or physio-sorbed.

5

Ceria films on high temperature crystals: QCM

Uncoated crystal $F_{21^{\circ}C} = 5833918 \text{ Hz}$ Coated crystal $F_{25^{\circ}C} = 5826468 \text{ Hz}$

$$\Delta F_{25^{\circ}C} = -7450 \text{ Hz}$$
$$\Delta m = 42 \text{ }\mu\text{g}$$

vol = 5.5 x 10⁻⁶ cm³ Thickness = 125 nm

SEI 20kV WD10mmSS50 x1,300 10μm U Film

$$\Delta f = -\left(\frac{n{f_0}^2}{A\sqrt{\rho_q \mu_q}}\right) \Delta m$$

$$\begin{split} \rho_{q} &= 3.570 \text{ g.cm}^{-1} \quad n = 1 \\ \mu_{q} &= 2.147 \text{ x } 10^{11} \text{ g.cm}^{-1} \text{s}^{-2} \\ \text{Coated area} &= 1.33 \text{ cm}^{2} \\ \text{Active area} &= 0.46 \text{ cm}^{2} \\ \text{d}_{\text{CeO}_{2}} &= 7.65 \text{ g.cm}^{-3} \end{split}$$

$$\label{eq:result} \begin{split} nF_0{}^2 &= 3.409 x \; 10^{13} \, {}^{\text{Hz2}} \\ (\text{Pgxug}{}^{0.5}) &= 8.755 \; x \; 10^5 \, {}^{\text{gcm-1s-1}} \\ \text{Cf} &= 3.89 \; x \; 10^7 \end{split}$$

Ceria films on GaPO₄ crystals: SEM and XRF

XRF map in a 7 x 7 grid (49 points) gives an average ceria thickness of 261 nm (SE = 29 nm).

This gives a piezoactive volume of $8.9 \times 10^{-6} \text{ cm}^3$ and therefore a porosity of 54%.

7

Ceria films on GaPO₄ crystals: BET

The BET equation allows the volume of a monolayer and the enthalpy of absorption to be calculated:

A plot of P/V(P₀-P) against P/P₀ gives an intercept of 1/VmC and a gradient of $(C - 1)/(V_M C)$, therefore we can calculate:

$$V_{m} = 2.43 \text{ x } 10^{-12} \text{ m}^{3} \text{ SA} = 4.46 \text{ m}^{2}\text{g}^{-1}$$

$$\Delta H_{abs} = 44.3 \text{ kJmol}^{-1} \qquad \Delta H_{bind} = 2.5 \text{ kJmol}^{-1}$$

8

Ceria films on GaPO₄ crystals: High temperature

The BET equation allows the volume of a monolayer and the enthalpy of absorption to be calculated:

Urania films on GaPO₄ crystals: SEM and XRF

- Δ F_{25⁰C} = −2352 Hz Δ m = 18 µg h (QCM) = 27 nm
- XRF map in a 15 x 15 grid (225 points) gives an average urania thickness of 42 nm (SD = 9 nm).

This gives a volume of $2.52 \times 10^{-6} \text{ cm}^3$ and therefore a porosity of 35%.

Urania films on GaPO₄ crystals: BET

The BET equation allows the volume of a monolayer and the enthalpy of absorption to be calculated:

A plot of P/V(P₀-P) against P/P₀ gives an intercept of 1/VmC and a gradient of $(C - 1)/(V_M C)$, therefore we can calculate:

$$V_{m} = 1.50 \times 10^{-12} \text{ m}^{3} \qquad \text{SA} = 4.7 \text{ m}^{2}\text{g}^{-1} \qquad \text{Calc.: 1000°C}$$

$$\Delta H_{abs} = 48.1 \text{ kJmol}^{-1} \qquad \Delta H_{bind} = 6.5 \text{ kJmol}^{-1}$$

$$V_{m} = 3.10 \times 10^{-12} \text{ m}^{3} \qquad \text{SA} = 8.92 \text{ m}^{2}\text{g}^{-1} \qquad 500°C$$

$$\Delta H_{abs} = 54.1 \text{ kJmol}^{-1} \qquad \Delta H_{bind} = 12.5 \text{ kJmol}^{-1}$$

ΤТ

Urania films on GaPO₄ crystals: High Temperature

The BET equation allows the volume of a monolayer and the enthalpy of absorption to be calculated:

Conclusions

- Coated quartz piezocrystals with ceria and urania layers of different porosities. Analysed the morphology and thickness by SEM, AFM, XRF.
- Measured the absorption of water onto the ceria and urania films by direct mass analysis at different humidities.
- Calculated the surface area of the ceria and urania films, and the volume and number of absorbed monolayers at room temperature.
- Varied the temperature of the ceria-water systems, showing the desorption of water up to 400°C.
- Synthesis of thoria-coated GaPO₄ crystals.
- Increase the temperature of the systems, showing the desorption of water up to 500°C.

Lancaster University

Pat Murphy Richard Wilbraham Fabrice Andrieux

NNL

Robin Taylor Robin Orr Dave Woodhead

Thanks for your attention

Saturated vapour pressure water

sat vap press vs T

Choose certainty. Add value.

The PhD after-life: Working for the supply chain

Dr Carlos De La Fontaine DISTINCTIVE consortium – April 2017

Nuclear Technologies

Background – insight on my PhD studies

2 Examples of careers in the nuclear industry

3 Drivers to join the supply chain

4 Brief overview of projects

5 Conclusion

TÜV

Background – 'Controlled Hydrolysis and Solid State Chemistry: Two Approaches to the Synthesis of Actinide Oxide Materials'

Nuclear Technologies

Ceramic wasteform

UO₂ fuel pellets

Pu₃₈ compound obtained by controlled hydrolysis¹

¹L. Soderholm, Angew Chem. Int., 2008

TUV®

Background – 'Controlled Hydrolysis and Solid State Chemistry: Two Approaches to the Synthesis of Actinide Oxide Materials'

Side project at Sheffield University: Synthesis and characterization of new pyrochlore solid solutions for actinide immobilisation

Nuclear Technologies

HTB layers

Ti1 [6]

Ti2 [6]

Ti3 [5]

50% occ.

Formulations studied: $Y_2Ti_{2-2x}Fe_xNb_xO_7$ $Y_{2-x}Ce_xTi_{2-x}Fe_xO_7$

TÜV

And what's next after your PhD?

Nuclear Technologies

Examples of alumni from Manchester Uni.

Alumni that graduated between 2010 – 2013...

Consultancy...

Broad range of tasks within a relatively short timescale

- Variety of technical work
 - » Process Engineering, Radioactive Waste Management, Optioneering studies, Structuring R&D programmes, Market Reviews, Knowledge Management...
- Work in different sites

» Sellafield, La Hague, Magnox, GDF (both on the French & British projects)...

• Commercial

» Preparation of bids, production of ITTs and task specifications, review of proposals

Business awareness

» Business development in the UK and abroad (mainly the

French market), recruitment

TUV SUD Nuclear Technologies

- Consultancy specialised in the nuclear industry
- Company funded in 1994
- Acquired by TÜV SÜD in (2006)
- ~100 Staff/Associate Staff in UK

Why do Site Licence Companies (SLCs) award contracts to the supply chain?

Nuclear Technologies

- Lack of expertise in a particular area
- Independent view Peer review
- Resource constraints
- Enable innovation ...

• And many more reasons

TÜV

Variety of technical work

Individual Bulk Storage Tank – SPP1

Process Engineering – Support to the Sludge Packaging Plant 1 (SPP1)

 R&D conducted on ½ and ¼ scale pilot plants mimicking SPP1

 Engineering support and underpinning technology performance

Nuclear Technologies

Pulse Jet Mixers

Slide 10

Variety of technical work (2)

Process Engineering – Support to the Sludge Packaging Plant 1 (SPP1)

Nuclear Technologies

Variety of technical work (3)

Cigéo – Centre Industriel de Stockage Géologique – French GDF

Nuclear Technologies

Peer-review of preliminary studies and early design of the French GDF

Examples: Orphan wastes (across the NDA estate), Aged TBP/OK (DSRL), Sludge - Flocs (La Hague), alpha contaminated gloveboxes (Sellafield), Characterisation of sludge in RST (Sellafield)...

TÜV®

Variety of technical work (5)

Radioactive Waste Management – Waste Led Approach

Nuclear Technologies

Variety of technical work (6)

Strategy – Spent Fuel Management

- Technical support to the NDA on Fuel Management (Magnox, AGR, Exotics)
- Support the development of the Spent Fuel strategy (review of baseline options, contingency plans, identifying gaps, production of Technical Roadmaps)
- Support engagement with stakeholder
- Production of task specifications and review of proposals

AGR sub-assembly

Nuclear Technologies

Nuclear Technologies

Just one of many profiles amongst former nuclear graduates...

Many opportunities within a growing industry...!

carlos.delafontaine@tuv-sud.co.uk

Switching on Ion Exchange in Metal Germanates

Ryan George

School of Chemistry, University of Birmingham

Distinctive 2017 – 3rd Annual Meeting 5th-6th April York

Introduction

- Target ¹³⁷Cs and ⁹⁰Sr (Fission yields 4.5-6%, Half life ca 30 years).
- Both radionuclides are highly mobile and can be easily incorporated into the body.
- Design Principles
 - High thermal and chemical stability.
 - Potential thermal conversion to wasteform.
 - Medium sized pores (6-8 ring pore openings).
 - Hydrated cations located in channels, exchange K⁺ for Na⁺/H⁺.

Octahedral-tetrahedral frameworks

- Some of these materials are naturally occurring.
- A wide range of materials have been synthesised with various different metal octahedra and Si tetrahedra.
- These materials are microporous and have hydrated cations in the channels, commonly sodium and potassium. Hence the interest as potential ion exchange materials.

OT frameworks

AV-7: $Na_{0.5}K_{1.5}SnSi_3O_9.H_2O$

EMS-2: $Na_4K_4Sn_4Si_{20}O_{52}$.12H₂O

AV-6: $K_2(Sn/Zr/Ti)Si_3O_9 \cdot H_2O$

AV-13: $Na_{2.26}(Sn/Zr/Hf)Si_{3}O_{9}CI_{0.26}.xH_{2}O$

AV-3: $Na_5Zr_2Si_6O_{18}(CI,OH) \cdot 2H_2O$

Ge vs Si

- Most of the published work covered focuses on changing the octahedral metal ion.
- Variation of the tetrahedral component may allow for further tunability.

Element	CN	Ionic radius
Si ⁴⁺	4	0.26 Å
Ge ⁴⁺	4	0.39 Å

OT Germanate phases

- Small number of microporous germanates are known.
- First phase of interest is K₂ZrGe₃O₉.H₂O, originally reported by Plevert *et al.*, *Inorg. Chem*, 2003, **42**, 5954-5959.
- This is a germanate derivative of the natural zirconosilicate mineral Umbite.
- Ion exchange properties not explored in the literature.

Umbite type materials

• $K_2MSi_3O_9.H_2O$ where M = Ti, Sn and Zr are all known with ion exchange properties explored.

K₂ZrGe₃O₉.H₂O

- Hydrothermal synthesis optimised to produce multigram quantities (ca. 80% isolated yield) from GeO₂, ZrOCl₂.8H₂0 and KOH at 200°C for 24 hours.
- Plevert *et al* recipe would yield around 0.3g per batch with a longer synthesis time.

K₂ZrGe₃O₉.H₂O lon exchange

Element	Molar ratio	Molar ratio	Molar ratio
Ge	1	1	1
Zr	0.50	0.37	0.48
К	0.60	0.44	0.54
Sr	-	-	0.01
Cs	-	0.02	-

 Exchange using 0.1M Cs⁺ or Sr²⁺ solutions with a 100:1 volume to weight ratio, shaken for 24 hours at ambient temperature. XRF analysis on loose powders.

Nb substitution

Element	CN	Ionic radius
Zr ⁴⁺	6	0.72 Å
Ti ⁴⁺	6	0.605 Å
Sn ⁴⁺	6	0.69 Å
Nb ⁵⁺	6	0.64 Å

- Nb⁵⁺ \longrightarrow Zr⁴⁺ + K⁺
- Single phase up to 30% Nb⁵⁺ for Zr⁴⁺

Nb substitution

K_{2-x}Zr_{1-x}Nb_xGe₃O₉.H₂O lon exchange

	10% Nb	20% Nb	30% Nb
Element	Molar ratio	Molar ratio	Molar ratio
Ge	1	1	1
Cs	0.29	0.37	0.63
Zr	0.37	0.33	0.30
К	0.38	0.33	0.25
Nb	0.04	0.08	0.11

• XRF analysis on loose powders

Pharmacosiderites

• Sn, Ti substitutions and Nb 40% doping result in the formation of pharmacosiderite phases.

 $\mathsf{HK}_3\mathsf{Ge}_7\mathsf{O}_{16}.\mathsf{4H}_2\mathsf{O}$

Sn and 40% Nb as impurity

ch Councils UK

Energy

For a Low Carbon Futur

 $HK_3Ti_4Ge_3O_{16}.4H_2O$

Ti source

Pharmacosiderites

	Parent	Cs	Sr
Element	Molar ratio	Molar ratio	Molar ratio
Ge	1	1	1
К	0.47	0.18	0.44
Sr	-	-	0.03
Cs	-	0.38	-

Parent	Cs	Sr
Molar ratio	Molar ratio	Molar ratio
1	1	1
1.12	1.08	1.13
0.86	0.21	0.29
-	-	0.28
-	1.05	-
	Parent Molar ratio 1 1.12 0.86 - -	Parent Cs Molar ratio Molar ratio 1 1 1.12 1.08 0.86 0.21 - - - 1.05

DISTINCTIVE

Summary

- Substitution of Ge for Si in the umbite structure does not improve ion exchange properties.
- Ion exchange can be switched on by doping Nb⁵⁺ for Zr⁴⁺, with facile Cs⁺ uptake in K_{2-x}Zr_{1-x}Nb_xGe₃O₉.H₂O.
- Other framework substitutions result in the formation of pharmacosiderite phases, which have also been shown to be good exchangers.

Further work

- Further explore pharmacosiderite ion exchange, with potential further chemical modification.
- Measuring K mobility.
- Studying thermal decomposition products of umbite.
- Studying sodium exchange in ZrGeUmbite.

Acknowledgements

- Dr Joe Hriljac
- Dr Tzu-Yu Chen

investing in **your** future

European Regional Development Fund European Union

www.advantagewm.co.uk

Characterization of cement based materials through atomic force microscopy

Luca Rizzo University of Strathclyde

Distinctive Annual Meeting 5/04/2017 National Railway Museum - York

Structure

1. Introduction to Atomic Force Microscopy

2. AFM/lab experiments

3. Further projects

Atomic Force Microscopy

Lennard Jones potential energy diagram

Atomic Force Microscopy

For a Low Carbon Future

2D topographic image

AFM topography

Modes of operation. There are 3 modes of AFM operation

- 1. Contact mode Contact mode 2. Non-contact mode Non-contact mode www.ww 3. Tapping mode Tapping mode MMMMM Fig. 7.3 Modes Force Tapping Repulsion Forces Contact Distance ch Councils UK Enera Non Contact For a Low Carbon Future Attraction Forces
- Contact mode and lateral force microscopy (static)
- 2. Frequency modulation (dynamic)
- 3. Tapping mode (dynamic)

Atomic Resolution

Calcite

Aromatic Compounds (UHV-AFM)

In situ reaction: in air (gas), and in liquid

Example: crystal growth(spiral) and dissolution(layer by layer) of Calcite

CaCO₃ supersaturated solution

DI water

AFM tests: cement pastes

Comparison between Nano Silica(left) and Silica Fume(right) reactivity with Calcium Hydroxide (Tapping mode in air)

 $Ca(OH)_2 + SiO_2 + H_2O \rightarrow C-S-H$

AFM tests: cement pastes

Cement pastes preparation trough MICA replication method at different temperature to evaluate its effect on surface roughness.

Interaction between strontium and calcite

 $Ca(OH)_2 + CO_2 => CaCO_3 + H_2O$

SEM image for portlandite crystal being covered by calcite

Interaction between strontium and calcite

For a Low Carbon Future

Interaction between strontium and calcite

- carbon
- oxygen protruding
- oxygen in plane
- oxygen inside
- calcium

Calcite (104)

Interaction between strontium and calcite

Atomic Resolution of calcite in $SrCl_2 0.5 \text{ mM}$ solution for 14 days. (tapping mode in liquid).

DISTINCTIVE

Interaction between strontium and calcite

Comparison between:

- Calcite crystal growth at fixed SI = 0.89 (CaCl₂ + Na₂CO₃) fixed pH = 10.2 (in equilibrium with atmospheric CO₂).
- Crystal growth with the addition of Sr²⁺ 0.2 mM
- Crystal growth with the addition of Sr²⁺ 0.6 mM

Interaction between strontium and calcite

Crystal growth over time on the [1014] surface of calcite. Steps velocity measured along the 441-481 directions as sections growing rates.

T1 = 0 s

Flow rate: 18 ml/h

Contact mode

Scan frequency: 9.77 hz

Dimensions: 10.5 x 10.5 um

Channel: deflection retrace

Interaction between strontium and calcite First data analyzed

Solution:	Section growth rate:
Calcite SI = 0.89	5.31 nm/s
+ 0.2 mM SrCl ₂	4.93 nm/s
+ 0.6 mM SrCl ₂	3.90 nm/s

Need to increase the number of pitches anylized and to complete the experiment by trying other concentrations in the range 0.1-0.8 mM or $SrCl_2$

Interaction between strontium and calcite

(c)

Same experiment using a supersaturated solution 1.20 SI to grow Spiral shaped pitches above the calcite surfaces.

Then adding the 0.89 SI solution with strontium at different concentrations to monitor steps velocities with respect to acute and obtuse steps.

Portlandite Single Crystals Synthesis

Via slow counter-diffusion method by $CaCl_2 + NaOH$ in very diluite solution SI = 0.40

XRD-fingerprinting to evaluate eventual carbonation.

Conclusions

• We reached a way to get cement paste surfaces to approach AFM characterization by MRM. We are studying how the temperature synthesis affect surface roughness.

Further works:

- Force distance curves on cement pastes (C-S-H surface characterizaion)
- Ettringite crystal growth (on cm sized crystals)

Conclusions

National Nuclear Laboratory Collaboration

- Strontium inhibition of calcite CG is confirmed by our data and is proportional to its concentration. (try effect of caesium and zinc)
- Porlandite synthesis of mm sized crystals
- Further experiments:
- Portlandite behaviour in presence of Mg(OH)₂ (Magnox) Epitaxial Growth
- Radionuclide incorporation into C-S-H pastes [Europium Caesium Zinc – Rhenium]

PhD student: Luca Rizzo

Supervisor: Dr Andrea Hamilton

Email: Luca.rizzo@strath.ac.uk

University of Strathclyde Glasgow

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263