

Novel Nanoparticle Cement for crack sealing and water transport:

from structural study to lab-scale application

Riccardo Maddalena, Dr Andrea Hamilton University of Strathclyde, UK

Theme 4 – Structural Integrity Meeting 14th November 2016 Penrith UK

GANTT Chart

NANOPARTICLE CEMENT

INTRODUCTION

C-S-H STRUCTURAL STUDY

RADIONUCLIDE IMMOBILIZATION LOW PRESSURE NANOSILICA INJECTION

FUTURE WORK

Introduction Structural Integrity

Deterioration of concrete and its durability has been the main concern in the last decades

NATIONAL NUC

[J. Collins 2010 - www.bridgehunter.com]

[Engineering and Technical Consultants, 2010]

Introduction Structural Integrity

- Chemical attack due to chlorides or other corrosive compounds
- Freeze and thaw cycles exposition
- Erosion due to saline environment
- High moisture transport through concrete elements

The main effect is the formation of nano-micromacro-**dangerous** cracks. Those can in turn involve several reactions, increasing the moisture content, air entrainment, contamination flux and compromise the safety, standard conformity and workability of the concrete structures.

Nanoparticle materials have been studied in concrete science: they act as a *filler*, reducing the water penetration content (or other potential contaminants), improving compressive strength, and enhancing the long term durability of concrete.

[Griebel, Bonn University, 2010]

	Compressive strength			Heat released	Bulk density	Porosity	XRD
Sample	[MPa]			[]/~]	[g/am3]		rhaaaa
	3	Age [uays] 7	28	[3/9]	[g/cm ^s]	-	phases
OPC425	16.1	38.4	51.2	235	1.9	0.21	E, P, CSH , C, C ₃ S, C ₂ S
OPC525	19.2	41.6	63.2	310	1.6	0.35	E, P, CSH , C, C ₃ S, C ₂ S
СНІ	0	2.4	6.4	43	0.9	0.61	P, CSH
CHI act	n/a	n/a	n/a	208	1.2	0.49	n/a
MK	0	3.2	5.1	455	1.0	0.53	P, CSH , F, Q, NASH
AMK	2.8	8.7	4.6	n/a	0.9	0.59	P, CAH , S
ВМК	7.5	5.1	6.6		0.9	0.58	P, CAH , CSH , S
MK-NS	0.8	1.2	1.8	n/a	0.6	0.72	P, CSH , CAH , Q, S
3CH-SF				47			P, CSH
1CH-SF	n/a	n/a	n/a	76	n/a	n/a	P, CSH
3CH-NS				151			P, CSH
1CH-NS	n/a	n/a	n/a	230	n/a	n/a	CSH

Research output

Research article Novel nano-particle cement: from micro-structure to bulk scale Riccardo Maddalena and Andrea Hamilton

In preparation Editor: -Date: November 2016

NANOPARTICLE CEMENT

INTRODUCTION

C-S-H STRUCTURAL STUDY

RADIONUCLIDE IMMOBILIZATION LOW PRESSURE NANOSILICA INJECTION

FUTURE WORK

Calcium Silicate Hydrate

Calcium-silicate-hydrate (C-S-H) is one of the main results of Portland clinker hydration. It forms by <u>chemical reaction</u> between water and tri- or di-calcium silicate (alite C_3S and belite C_2S respectively), typical clinker minerals.

X-Ray diffraction pattern of 13 days aged Ordinary Portland cement.

It is responsible for *strength and hardening* in cement paste and concrete.

Portlandite

SEM image of Portlandite crystal in hydrated cement [Franus et al., 2005]

Portlandite, $Ca(OH)_2$, is a result of hydrated cement and comes from the reaction of CaO and water.

Portlandite has an hexagonal plate-like structure.

C-S-H synthesis

Synthetic C-S-H was made using two different calcium sources: calcium hydroxide **CH**, reagent grade and calcium oxide **C**, obtained by calcination of calcium carbonate, reagent grade. Two different silica particle sizes were used: silica fume **SF** (0.15 - 0.30 µm) and nanosilica **NS** (5 – 35 nm). Decarbonated water was used in the mixes. C-S-H paste was manually mixed and cast in cubic moulds. After 24 hours specimens were demoulded and placed in a sealed environment to prevent **carbonation**.

Sample	СН	SF	NS	Target ratio
IIIX	wt %	wt %	wt %	\frown
	C/S			
3CH-SF	75	25	-	>1
1CH-SF	50	50	-	0.81
3CH-NS	75	-	25	>1
1CH-NS	50	-	50	0.81
	C/S			
1CO-SF	50	50	-	1.07
1CO-NS	50	-	50	1.07

Synchrotron X-Ray Diffraction

Monochromatic 2D diffraction, $\lambda = 0.15508 \text{ Å}$

Raman Spectroscopy

100 - 4000 cm⁻¹, 785 nm laser, map size 100 µm grid

Scanning Electron Microscopy

FE-SEM, 20.0 kV and EDX mapping

RENISHAW/ Resultance

Research output

Journal of Materials Chemistry

Research article A novel synthesis process for calcium silicate hydrate gel (C-S-H) with tobermorite-like structure Riccardo Maddalena and Andrea Hamilton

In submission to **Journal of Material Chemistry A** Editor: Royal Society of Chemistry Date: November 2016

Research article Hydrothermal synthesis of calcium silicate hydrate gel: synchrotron XRD studies Riccardo Maddalena and Andrea Hamilton

In preparation Editor: -Date: December 2016

NANOPARTICLE CEMENT

INTRODUCTION

C-S-H STRUCTURAL STUDY

RADIONUCLIDE IMMOBILIZATION LOW PRESSURE NANOSILICA INJECTION

FUTURE WORK

From previous morphological investigation, C-S-H crystal structural can be altered varying its

C/S ratio or synthesis conditions, in order to "**house**" other atoms in its interlayer spacing.

Radionuclides

NATIONAL NU

Interaction mechanism of radionuclides with C-S-H phases

There are three main possible reactions that lead to the immobilisation of radionuclides into the C-S-H structure:

1. complex formation reactions:

a) outer sphere or b) inner sphere;

- 2. sorption, ion exchange mechanisms:
 - c) structural incorporation;
- 3. surface precipitation:
 - d) co-precipitation.

Decommissioning Authority

[Mandaliev et al., 2010]

NATIONAL NUCLEA

LABORATORY

DISTINCTIVE

Different radionuclides are investigated:

³H ⁹⁰Sr ⁹⁹Tc ¹³⁷Cs ²³⁹Pu ²³²Th

1. Synthesis and formation of C-S-H phase in presence of radionuclides.

2. Sorption of radionuclides into C-S-H phases with time.

An

Sellafield Ltd

Characterisation of C-S-H paste is the key to fully understand the interaction mechanism of radionuclides with C-S-H phases.

Synchrotron X-Ray Diffraction provides structural information and morphology of C-S-H phases formed in presence of radionuclides.

Characterisation of C-S-H paste is the key to fully understand the interaction mechanism of radionuclides with C-S-H phases.

Sorption test gives quantitative analysis about the immobilisation capability of radionuclides into

In July 2016 synchrotron XRD measurements have been carried out on C-S-H samples.

NATIONAL NUCLEA

LABORATORY

In July 2016 synchrotron XRD measurements have been carried out on C-S-H samples.

NANOPARTICLE CEMENT

INTRODUCTION

C-S-H STRUCTURAL STUDY

RADIONUCLIDE IMMOBILIZATION LOW PRESSURE NANOSILICA INJECTION

FUTURE WORK

NATIONAL NUCLEA

LABORATORY

Aim of the project is to investigate new cement mixtures able to <u>seal</u> nanocracks, <u>preventing</u> deterioration and giving and adequate (controlled) <u>impermeability</u> to existing concrete structures.

NATIONAL NUCLEA

LABORATORY

Aim of the project is to investigate new cement mixtures able to <u>seal</u> nanocracks, <u>preventing</u> deterioration and giving and adequate (controlled) <u>impermeability</u> to existing concrete structures.

Aim of the project is to investigate new cement mixtures able to <u>seal</u> nanocracks, <u>preventing</u> deterioration and giving and adequate (controlled) <u>impermeability</u> to existing concrete structures.

Sellafield Ltd

Portland cement CEM II/A-L Strength class 42.5 MPa					
Components	%				
Clinker	93				
Gypsum added	7				
Chemical composition (>0.2%)					
SiO ₂	20.1				
Al ₂ O ₃	5.1				
Fe ₂ O ₃	3.4				
CaO	63.0				
MgO	2.6				
SO ₃	2.4				
Na ₂ O	0.3				
Density (g/cm ³)	3.2				
Specific area (m²/g)	0.38				
Compressive strength, 28 days (MPa)	60				

Nano-silica

THE REAL	Components	LUDOX T50 [©]	ELKEM [©]
	State	Aqueous suspension	particles
80	Chemical composition (>0.2%)	%	%
an 1	SiO ₂	50	99.9
	Water	50	-
	Particle size range (nm)	5-20	150-1000
	Density (g/cm ³)	1.4	1.56
ano-silica	Specific area (m²/g)	160	21.5
DISTINCTI	VE NATIONAL NUCLE		ellafield Ltd

Silica fume

Experimental set-up

Experimental parameters

Experimental parameters

Experimental parameters

Silica particles will be forced to penetrate into *cement pores* in which an elevated **portlandite** content (naturally present in hydrated OPC as a result of hydration process) can be found. The particles will react with **calcium hydroxide** to form additional **C-S-H** and precipitate in the pores.

Weight change

At the end of the injection period, the disc was removed and oven-dried at 60 °C for ca. 100 hours. The sample weight was recorded before and after injection to quantify the amount of silica in the pores.

Open porosity ($\boldsymbol{\psi}$) was estimated by measuring the total water amount in each sample after oven-drying at 60 °C and overnight saturation in a vacuum chamber. Open porosity was calculated using the equation:

 $\psi = \frac{m_{_s} - m_{_d}}{V \cdot \rho}$

where $\boldsymbol{\psi}$ is the open porosity, \boldsymbol{m}_s is the sample water saturated mass (kg), \boldsymbol{m}_d is the sample dried mass (kg), \boldsymbol{V} is the volume of the sample (m³) and $\boldsymbol{\rho}$ is the density of the water at 20 °C (kg/m³).

An average of 20 mg was sampled from the cross section of the disc and powdered. Thermal analyses were conducted at a heating rate of 10 °C min⁻¹ from 25 °C to 1000 °C under nitrogen gas flow, using a Netzsch simultaneous analyzer.

The relative content of **C-S-H** gel and portlandite **Ca(OH)**₂ at different nano-silica concentrations values.

The relative content of **C-S-H** gel and portlandite **Ca(OH)**₂ at different nano-silica concentrations values.

The relative content of portlandite in respect to the silica concentration:

nano-silica Vs silica fume

Decommissioning

Sellafield Ltd

NATIONAL NUCLEA

LABORATORY

SEM imaging

The silica concentration (10%, 15% and 20% wt.) influences the penetration depth, at a fixed injection time (14 days)

After 14 days of injection

SEM imaging

The silica concentration (10%, 15% and 20% wt.) influences the penetration depth, at a fixed injection time (14 days)

Decommissioning Authority

SEM imaging

The silica concentration (10%, 15% and 20% wt.) influences the penetration depth, at a fixed injection time (14 days)

1. Low-pressure (20 kPa) silica injection has effectively impregnated cement samples. After 14 days of injection with a nano-silica suspension of 20% wt. concentration, we observed a total reduction of 30% in porosity, suggesting this is a potential consolidant for friable or cracked concrete.

1. Low-pressure (20 kPa) silica injection has effectively impregnated cement samples. After 14 days of injection with a nano-silica suspension of 20% wt. concentration, we observed a total reduction of 30% in porosity, suggesting this is a potential consolidant for friable or cracked concrete.

1. Low-pressure (20 kPa) silica injection has effectively impregnated cement samples. After 14 days of injection with a nano-silica suspension of 20% wt. concentration, we observed a total reduction of 30% in porosity, suggesting this is a potential consolidant for friable or cracked concrete.

2. After 14 days of nano-silica injection an average penetration depth of ca. 745 µm of was measured, which

is ca. 20% of the cross section of the sample (4 mm).

Research output

Research article Low-pressure silica injection for porosity reduction in cementitious materials

In press: **Journal of Construction and Building Materials** Editor: Elsevier Inc. Date: November 2016

- **1.** Nanoparticles in cement show a higher reactivity compared to traditional OPC.
- C-S-H synthesis methods and different calcium sources affect the formation of C-S-H and structural changes have been observed.
- 3. C-S-H structure can be altered and tailored in order to *house* other atoms.
- **4.** <u>Immobilisation</u> of radionuclides into C-S-H phase can occur through different mechanism: from structural incorporation to surface interaction.
- Injection of nanosilica promotes <u>decrease of porosity</u> and formation of **additional C-S-H**.
 Controlling the C/S ratio and other parameters, this additional C-S-H could be tailored in order to immobilise radionuclides and precipitate into nano-cracks.

Future work

- **1.** Synchrotron XRD data analysis will give a further insight into the interaction mechanism between C-S-H phase and radionuclides.
- 2. ²⁹Si NMR spectroscopy measurements will be carried out on C-S-H gel and

radionuclides, in order to investigate the immobilisation capability and structural

information. The analysis will be carried out at the Department of Civil Engineering of

Tsinghua University in Beijing (CHINA), supported by G.R.E.A.T. project.

WORK IN PROGRESS

Workflow chart

Riccardo Maddalena

University of Strathclyde, Glasgow - UK

Nanoparticle injection

Low-pressure nanosilica injection was investigated at lab-scale. A solution of **nanosilica** (particle size range of 5 – 15 nm) will be injected through a 28 days cured OPC disc (thickness 4 mm) at a \sim **20 kPa** of hydrostatic pressure.

Application of low-pressure injection in legacy ponds concrete structures

Sellafield Ltd

The University of Manchester

Actinide interactions with waste and structural materials

Pieter Bots

K. Morris, R. Hibberd, G.T.W. Law, J.F.W. Mosselmans, A. Brown, J. Doutch, A. Smith, T.A. Marshall, A. van Veelen, C. Muryn, R. Wogelius and S. Shaw

- Introduction
- Np(V) fate during iron oxide crystallization
- Actinide interaction with magnetite(111) surfaces
- Summary

Geological disposal of radioactive waste

Waste management via disposal in Geological Disposal Facilities preferred option.

UK: Cement in GDF creates a hyperalkaline (pH > 9) groundwater plume

Corrosion of metals in construction and waste materials

Affect the (geo)chemistry of many actinides of concern

Uranium, most dominant by mass **Neptunium**, a major dose contributing radionuclide **Plutonium**, major product in nuclear fuel cycle

http://dev.bigradnerc.com/project-information/

Rationale

Understanding actinide geochemistry and behaviour is important

Focus on interaction with iron oxides

Relevant to waste management scenarios

Geochemistry of U, Np and Pu under these conditions is not well understood

- Speciation
- Sorption
- Incorporation
- Redox

Np(V) interaction during Fe(III)-(oxyhydr)oxide crystallization

University of

Adsorption of Np(V) to Ferrihydrite at pH 9.5 and 11

Crystallisation of ferrihydrite to hematite (Fe_2O_3) or goethite (FeOOH)

• In the presence and absence of Np(V)

Analyses

- XRD
- Acid leach + ICP-MS
- First ever Np XAS analyses at Diamond Light Source

Experiment	рΗ	Temp (°C)	Scope	
Hcont	10.5	120	Fate of Np during the crystallisation of	
			ferrihydrite to hematite	
Gcont	13.3	RT	Fate of Np during the crystallisation of	
			ferrihydrite to goethite	

Np(V) during ferrihydrite crystallisation

ntensity (a.u.)

XRD and TEM confirm the formation of only hematite and goethite

Acid leach and shift in features in XANES spectra indicate Hematite

Np(V) incorporated

Goethite

• Acid leachable Np(V) phase

Sample name	%Np pre-leach	%Np post-leach
Hematite	100(0)	94(0)
Goethite	100(0)	22(3)

Np(V) incorporation in hematite

The University of Manchester

MANCHESTER

8% Np(V) release into solution after acid leach

6-fold coordinated Np(V)

 loss of dioxogenyl NpO₂⁺ suggesting distortion

Np-Fe bonds consistent with direct substitution for octahedral iron in the structure of hematite

				Hematite (CIF)		
Path	CN	R (Å)	σ² (Ų)	CN	R (Å)	∆R (%)
Np-O _{ax}	1	1.86(1)	0.0014(4)			
Np-O _{eq}	2	2.16(1)	0.007(1)	3	1.95	11
Np-O _{eq}	3	2.39(2)	0.007*	3	2.12	13
Np-Fe	1	2.97(2)	0.011(1)	1	2.90	1
Np-Fe	3	3.11(1)	0.011*	3	2.97	5
Np-Fe	3	3.37(2)	0.011*	3	3.36	0.3
Np-Fe	3	3.56(2)	0.011*	6	3.71	-4

Np(V) behaviour during goethite crystallisation

- Acid leach released 78
 % into solution
- EXAFS very similar as NpO₂OH (Gaona et al. 2012 and 2013)

Possible phases

- NpO₂(OH) (undersaturated)
- Ca_{0.5}NpO₂(OH)₂ (supersaturated)
- NaNpO₂(OH)₂ (no data)

					NpO ₂ OH (EXAFS)		
Sample	Path	CN	R (Å)	σ² (Ų)	CN	R (Å)	
	Np-O _{ax}	2	1.88(1)	0.004(1)	2	1.86	
	Np-O _{eq}	1.5	2.25(2)	0.005(2)	2	2.23	
	Np-O _{ea}	3.5	2.43(2)	0.005*	3	2.42	

Conclusions

- 1. Np(V) directly replaces 6-fold coordinated Fe(III) in the crystalline structure of hematite (pH 10.5)
- 2. Forms a disordered neptunyl hydroxide / neptunate solid at pH 13.3

(Bots et al. 2016 - Environmental Science and Technology)

The University of Manchester

Re-use and Volume Reduction of Scabbled Contaminated Concrete

Toby Lord

Dr Leon Black

Overview

- Introduction & Background
 - Contaminated concrete
 - Scabbling
 - Research basis
- Cementitious replacement
 - Characterisation
 - Replacement
- Ternary grout
- LIBS for contamination detection

Contaminated Concrete

- Contamination through direct contact with radionuclide containing air or water.
- Radionuclides can be physically or chemically bonded to the concrete^[1];
 - soluble elements within pore water, physically bonded.
 - chemical bonding onto different phases within cement matrix or gel.
- Also products from activation of concrete and reinforcing steel exposed to neutron flux.
- Depth of contamination depends on radionuclide.
 ²³⁹I shown to penetrate up to several cm in degraded concrete, but more particulate Pu remains on surface.
- Radionuclides expected depend on exposure history of concrete.

UNIVERSITY OF LEEDS

[1] BATH, A., DEISSMANN, G. & JEFFERIS, S. 2003. Radioactive Contamination of Concrete: Uptake and Release of Radionuclides. The 9th International Conference on Radioactive Waste Management and Environmental Remediation. Oxford: ICEM.

10000

100

Scabbled Concrete

- Removal of outer contaminated layer from bulk concrete.
- Physical or mechanical removal laser, microwave, grinding, water blasting, liquid nitrogen.
- Intact bulk concrete remains, particulate scabblings removed for treatment.
- Enables bulk concrete to be disposed of as VLLW or exempt waste.
- Arising scabblings currently treated as LLW or mostly ILW, requiring disposal.

UNIVERSITY OF LEEDS

Research Basis

- Over 50% UK's nuclear waste is concrete and building rubble and over 2,000,000 tonnes of concrete at Sellafield site alone.
- During decommissioning large volumes of contaminated scabbled concrete will arise requiring disposal. 2013 waste inventory shows 59,000 tonnes concrete, sand and rubble conditioned or from future arising's^[3].
- With very high disposal costs of £14,000 per m³ of ILW^[2], this will prove very costly.
- As part of Waste Management Hierarchy, re-use and volume reduction of waste is preferable to disposal – co-disposal within grout matrix encapsulating other waste.

[2] DEPARTMENT OF ENERGY & CLIMATE CHANGE 2011. Waste Transfer Pricing Methodology for the Disposal of Higher Activity Waste from Nuclear Power Stations. London: Department of Energy and Climate Change.[3] PÖYRY ENERGY LIMITED & AMEC PLC 2014. The 2013 UK Radioactive Waste Inventory. Moor Row, Cumbria.

Characterisation

- Scabbled material is fine, particulate material
 - Particle size two dominant materials,

non-uniform size distribution

- Particle shape dominated by high energy scabbling processes
- Is there any remaining reactivity?
 - XRD, TGA analysis presence of anhydrous material
 - Calorimetry increased heat of hydration

Cementitious Replacement

 Use of scabbled material as a binder replacement within encapsulation grouts – co-disposal.

UNIVERSITY OF LEEDS

- Stringent specifications
 - Heat output cumulative heat of hydration must be less than 250 Joules per gram within the first 24 hours after casting.
 - Fluidity Colflow testing
 - Setting time between 4 and 24 hours
 - Bleed less than 1% by mass
 - BFS:OPC ratio to be 3:1
- At what replacement level will grout still meet specifications?
- 10, 20 and 40% replacement levels to be used within a number of tests

- Heat output measured through calorimetry quartz used as inert reference
- Fluidity measured using Colflow test requiring two pints of grout
 - Due to large volumes, and limited synthesised material, desktop rheometry required link between colflow and desktop rheometry being investigated.
 - Envelope of grout viscosity in which Colflow test will be passed
- Setting time and bleed measured through standard industry testing
- Replacement of total binder content to be carried out replacing individual components creates too many variables.

Ternary Grouts

- Ternary cements are those with high CRM levels, as well as the addition of limestone or calcium carbonate.
- Scabbling to occur on outer surfaces of aged concrete structures carbonation of cement paste very likely to have occurred, in which case calcium carbonate is present.
- Behaviour of high BFS grout with inclusion of calcium carbonate from recycled scabblings to be investigated.

- Stabilisation of AFt phases can lead to densification of cement matrix reduced porosity and permeability could be advantageous for long term durability.
- Similar experimental procedure to cementitious replacement, but shift of focus onto effect of carbonated material on properties of grout. Accelerated carbonation of synthesised material will take place.
- Early age heat output may increase could limit maximum replacement level.
- Plans to investigate changes in porosity and permeability using X-CT at central lab.

LIBS for Contamination Detection

Laser Induced Breakdown Spectroscopy

- High powered laser creates plasma on surface of sample
- Light spectroscopy carried out on plasma
- Results produced on wavelength and intensity plot elements have known wavelengths

UNIVERSITY OF LEEDS

- 6 samples made with either standard cement or 20% PFA replacement
- 2 control samples, 2 with 1 wt% contaminants, 2 with 0.1 wt% contaminants
- Copper sulphate, potassium iodide and cerium oxide used

- Initially laser intensity kept below detector saturation point for all elements, and no differences observed.
- Intensity then increased such that saturation occurred for some elements, but amplified the peaks of other trace constituents, including contaminants

- When laser intensity increased, visible peaks attained for contaminants
- Two known copper wavelengths, 324.7540 and 327.3957, showing clear increased intensity for samples with copper sulphate addition

- When laser intensity increased, visible peaks attained for contaminants
- Peaks for cerium also identified, including very slights peaks for 0.1 wt% contaminants

- Initial work shows possibility of using LIBS for contaminant detection.
- Further work on using nuclear simulant materials.
- Methods of contamination to be investigated solid and liquid inclusions at mixing, immersion in contaminated water.

Thank you

Questions?

3D Real-time Reconstruction and Recognition for the Nuclear Waste on the Robot Arm

Henry Cheng Zhao¹, Kevin Li Sun¹ and Rustam Stolkin¹ Tom Robinson²

University of Birmingham¹ Birmingham, UK¹ Sellafield Ltd² Whitehaven, UK²

cxz514@cs.bham.ac.uk lisunsir@gmail.com R.Stolkin@cs.bham.ac.uk tom.robinson@sellafieldsites.com

November 14, 2016

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

Contents

- 1 Introduction
- 2 3D Reconstruction
- 3 2D Material Recognition
- 4 3D Object Recognition and Pose Estimation
- 5 Nuclear Material Database

6 Future Work

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

Robot Arm in Nuclear Industry

- Millions of technical wastes with radioactivity generated
- Improve the life safety and decrease the labour cost in the nuclear industry
- Automate the robot arm manipulation for the radioactive wastes classification, sorting and storing
- Make the robot arm have the abilities: 3D automatic reconstruction. 2D/3D nuclear material recognition and object manipulation in real-time

The Pipeline of RGBD SLAM

The pipeline of RGBD SLAM can be divided into two parts: Frontend and Backend.

Frontend: obtain the sensor data, extract the features and calculat the geometric relationships

Backend: construct a graph, perform loop closure detection, optimise the graph structure and generate the 3D map.

Figure: The pipeline of RGBD SLAM.

The pseudo-code of RGBD SLAM

Algorithm 1 3D SLAM based on Graph Optimization

- Initialize the key frame sequence F, add the first frame f₀ to F add Vertex_{f0} to Graph
- 2: procedure (For a new frame I, calculate the transformation e using SIFT based on RANSAC between the last key frame in F and I)
- 3: if Numbergoodmatch < goodMatchThrehold then
- 4: bad match, delete this frame.
- 5: if Numberinliers < inlierThrehold then
- 6: bad match, delete this frame
- 7: if $e > E_{far,hreshold}$ then
- 8: too far, delete this frame
- 9: if $e < E_{key_t hreshold}$ then
- 10: too near, delete this frame
- 11: if $E_{key_t hreshold} \leq e \leq E_{far_t hreshold}$ then
- add I to key frame sequence F,
- 13: add a Vertex and a Edge to Graph
- 14: procedure NEARBY LOOP DETECTION (compare the last N frames in F with I)
- 15: if mactched then
- add a Edge to the Graph.
- 17: procedure RANDOM LOOP DETECTION (compare the random N frames in F with I)
- 18: if mactched then
- 19: add a Edge to the Graph.
- 20: if There is new frame then
- 21: goto Line 2
- 22: else
- 23: Optimize the pose
- 24: Generate the 3D map

C. Zhao, S. Li, R. Stolkin and T. Robinson

Figure: The 3D reconstruction results of the nuclear objects in a table and cabinet.

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

3D Reconstruction Results

Figure: The 3D reconstruction results of an office.

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

3D Reconstruction Demos

- 1 Cabinet
- 2 Office
- 3 3D models

C. Zhao, S. Li, R. Stolkin and T. Robinson

3D SLAM Evaluation

The error of 3D map is directly related to the error of the camera trajectory.

Relative pose error(RPE) and absolute trajectory error(ATE) for the visual odometry evaluation

Figure: The plot of (a)RPE and (b)ATE of a office scene in TUM database.

Materials in Context Database

Materials in Context Database (MINC) is employed for the CNN pre-training.

MINC has 23 different material data like wood, glass, metal, tile, leather, stone, paper, plastic, ceramic, fabric, brick, and etc.

Figure: The patches of 23 categories in MINC.

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

The Pipeline of Material Recognition

- Preprocess MINC data.
- Fine-tuning VGG network using MINC patches.
- Transplant VGG fully connected network into fully convolution network.
- Train FCN-32s, FCN-16s and FCN-8s network

Figure: The pipeline of FCN-32s, FCN-16s and FCN-8s network.

The architecture of CNN

The architecture of fine-turning VGG, fully convolution network VGG, FCN-32s, FCN-16s and FCN-8s.

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

The qualitative results

m Figure: (1)original (2)Ground truth (3)FCN-32s (4)FCN-16s (5)FCN-8s

n

k

UoB. Sellafield Ltd. UK

0

Material Recognition Demos

Material Recognition Demos

1 Material recognition

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

The quantitative results

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

Fast Object Detector

· Conditional Region Growth for Fast object detection

C. Zhao, S. Li, R. Stolkin and T. Robinson

Dataset Processing

- Pre-trained on ModelNet Dataset, 12k models
- virtual camera capture: 24 poses per object, 200+k depth maps

Network Architecture

- · 12 layers network architecture
- Scale-invariant: applying local region normalisation on features

Performance

Average accuracy is 92.3%, second best in Model-Net dataset

Algorithm	ModelNet40 Classification (Accuracy)	ModelNet40 Retrieval (mAP)	ModelNet10 Classification (Accuracy)	ModelNet10 Retrieval (mAP)
3D-GAN [10]	83.3%		91.0%	
VRN Ensemble [9]	95.54%		97.14%	
ORION [8]			93.8%	
FusionNet [7]	90.8%		93.11%	
Pairwise [6]	90.7%		92.8%	
MVCNN [3]	90.1%	79.5%		
GIFT [5]	83.10%	81.94%	92.35%	91.12%
VoxNet [2]	83%		92%	
DeepPano [4]	77.63%	76.81%	85.45%	84.18%
3DShapeNets [1]	77%	49.2%	83.5%	68.3%

C. Zhao, S. Li, R. Stolkin and T. Robinson

UoB, Sellafield Ltd, UK

Nuclear material database

glove1.jpg

iron_pipe2.jpg

mask.jpg

ar. plastic_sheet.jpg

glove3.jpg

iron pipe3.jpg

mask2.jpg

plastic_sheet2.jpg

iron_pipe4.jpg

paper towel.jpg

protection suit.ipg

iron rode.jpg

plastic_pipe.jpg

protection suit2. ipq

wood blocks.png

Figure: The nuclear material database.

Future Work

Future work lists

- 1 Enlarge and diversify our nuclear industrial material database.
- 2 Optimize the 2D material recognition using CRF.
- 3 Integrate 3D reconstruction and 2D material recognition to 3D semantic reconstruction in real-time.
- 4 Apply the 3D real-time semantic reconstruction to the KUKA robot arm for nuclear waste picking and sorting.

³D Real-time Reconstruction and Recognition for the Nuclear Waste on the Robot Arm

Thanks. Any questions?

C. Zhao, S. Li, R. Stolkin and T. Robinsor

UoB, Sellafield Ltd, UK