Transitioning of Spent AGR Fuel from Wet to Dry Storage

James Goode

University of Leeds

Supervisors: Prof. Bruce Hanson, Dr David Harbottle

pmjbg@Leeds.ac.uk

November 11, 2016

AGR Fuel Drying

Introduction

- Large quantities of nuclear fuel has accumulated in storage ponds.
- Fuel can not be stored in ponds indefinitely.
- In many countries dry storage of spent nuclear fuel (SNF) is used as an interim measure.
- Key requirements for dry storage are criticality prevention, integrity maintenance and retrievability.
- All of these are affected by corrosion and hence the **Entry** action with water.

James Goode (University of Leeds)

AGR Fuel Drying

November 11, 2016

2 / 14

Corrosion Behaviour

• Differences in corrosion behaviour of inner and outer cladding surface.

Inner Surface

Rib

AGR Fuel Drying

XPS Depth Profiling

• Outer surface appears to have lower oxygen content and thinner oxide layer.

Oxygen

Nickel

Chromium. Expected peaks 574.3, 576 and 577.3 eV for metal, oxide and OH respectively.

Adsorbed Water

• TGA/MS Shows insignificant adsorbed water.

James Goode (University of Leeds)

AGR Fuel Drying

Cracked Samples

- Steel treated to form cracks.
- No success with 20/25 but have cracked 304.

Drying Rig and Test Piece

James Goode (University of Leeds)

AGR Fuel Drying

Drying Rig Data

Data output is something like this.

James Goode (University of Leeds)

DISTINCTIVE 11 / 14

AGR Fuel Drying

November 11, 2016

Drying Rig Data

Zooming in on highlighted areas.

James Goode (University of Leeds)

AGR Fuel Drying

36 Different Conditions Used

- Three Temperatures; RT, $60^{\circ}C$ (wam) and $150^{\circ}C$ (hot).
- Three Pressures; 20 mBarA, atmospheric pressure, high pressure (10 BarG).
- Four different gases; air, N_2 , Ar and CO_2 .

Summary

Sample Preparation

- Adsorbed water is negligible.
- Still working on XPS and SCC.

Drying Tests

- Initial work has shown hot vacuum drying to be most effective.
- Further tests ongoing.

James Goode (University of Leeds)

AGR Fuel Drying

Grain Boundary Damage Mechanisms in strained AGR under Irradiation

<u>C. Barcellini^{*1,2}</u>, S. Dumbill³, S. Pimbott^{1,4}, and E. Jimenez-Melero^{1,2}

¹DCF, UoM, ²School of Materials, UoM, ³NNL, UoM, ⁴School of Chemistry, UoM (*Correspondence:<u>chiara.barcellini@postgrad.manchester.ac.uk</u>)

DISTINCTIVE Theme 1 Meeting: AGR, Magnox and Exotic Spent Fuels

The Rheged Centre, Redhills, Penrith, 15th November 2016

Contents

1 Introduction

- 2 Materials and Methods
- **3** Experimental Results
- 4 Conclusions
- 5 Future Work

Contents

1 Introduction

- 2 Materials and Methods
- **3** Experimental Results
- 4 Conclusions
- 5 Future Work

Interim Storage of AGR Spent Fuel

- Wet storage of AGR fuel might last several years
 - challenge for the corrosion properties of the cladding material
- Through-wall failures during wet storage are ascribed to inter-granular corrosion (IGA)
- Lack of recent a about irradiated AGR cladding material
- Difficulties in studying neutronirradiated materials

EPSRC NATIO

Introduction

Sensitisation with charge particles

Sensitised specimens can be produced using intense beams of protons or heavy ions

ADVANTAGES:

- user-adjustable radiation
- similar microstructure
- reduced induced radioactivity

PhD main Objectives:

- access irradiation conditions
- study microstructures produced during irradiation

Contents

1 Introduction

2 Materials and Methods

- **3** Experimental Results
- 4 Conclusions
- 5 Future Work

Materials and Methods

AGR cladding material

Austenitic Stainless Steel Fe-Ni-Cr alloy

- high corrosion resistance
- no ductile-brittle transition
- high creep resistance

Austenitic matrix has an FCC crystal structure

Materials and Methods

The University of Manchester Dalton Nuclear Institute

thester Research Council

Contents

1 Introduction

- 2 Materials and Methods
- 3 Experimental Results
- 4 Conclusions
- 5 Future Work

Experimental Results

Experimental Results

BATCH 1 930°C for 40min

BATCH 2

Materials as received

AGR TUBE

- cut
- outer ribs removed (0.5mm thick) ►
- split ►
- rolled until flat

heat treat 930°C for 40min ►

Dalton Nuclear Institute

EPSRC NATIONAL NUCLEAR Engineering and Physical Sciences Research Council

16 mm

Annealed 20Cr15N Nb-stabilised s.s.

8	BATCH 1			BATCH 2			₽ F	AGR TUBE		
	BATCH 1			BATCH 2				AGR	TUBE	
	[wt%]	sd [wt%]			[wt%]	sd [wt%]	9	[wt%]	sd [wť%]	
Si	0.53	0.04		Si	0.64	0.06	Si	0.65	0.04	
Cr	20.71	0.11		Cr	21.32	0.18	Cr	, 20.23	0.11	
Mn	0.89	0.08	4	Mn	0.73	0.12	Mn	0.75	0.08	
Fe	53.19	0/.17		Fe	53.19	0.26	Fee	54.07	0.17	
Ni	24.40	0.16		Ni	24.71	0.24	≷ †Ni	. 23.73	0.16	
Nb	0.27	0.08		Nb	0.56	0.15	Nb	0.57	0.1	
	100					Carl Cont		Ne C	La.	

Annealed 20Cr15N Nb-stabilised s.s.

Experimental Results

Experimental Results

Materials and Methods

Contents

1 Introduction

- 2 Materials and Methods
- 2 Experimental Results
- 4 Conclusions
- 5 Future Work

- Proton irradiations of 20Cr25Ni Nb-stabilised s.s. can be performed in controlled conditions of damage and temperatures at DCF
- The heat treatment (40min at 930°C) produces a partially recrystallised austenitic structure with intra and inter-granular Nb-rich second phases
- The annealed austenitic matrix has a {101}<111> texture

Contents

1 Introduction

- 2 Materials and Methods
- 2 Experimental Results
- 4 Conclusions
- 5 Future Work

- Micro-structural characterisation of heat treated samples
- New irradiation experiment in January 2017
- Preparation of irradiated specimens for AEM using
 - electropolishing
 - ► (FIB) > Site-specific specimen preparation
 - ▶ grain boundaries -> RIS
 - second phases -> precipitates stability under irradiation

Thank you for your attention

Questions?

Bibliography

[1] C. Taylor, Radiation-induced sensitisation of stainless steel, Berkeley Nuclear Laboratories, 1986.

[2] D.I.R. Norris, C. Baker, J.M. Titchmarsh, Radiation-induced sensitisation of stainless steel, Berkeley Nuclear Laboratories, 1986.

[3] P. T. Wady, A. Draude, S. M. Shubeita, A. D. Smith, N. Mason, S. M. Pimblott, E. Jimenez-Melero, Nucl. Instr. Meth. Phys. Res. A 806 (2016) 109.

Investigations into the formation of Uranium Hydride

James Ed Darnbrough DISTINCTIVE Theme 1 meeting Penrith 15/11/16

Talk Outline

- Interest
- Bulk investigation
- In-situ Synchrotron
- STEM and EELS study
- Conclusions

Interest in Uranium metal corrosion

• Legacy uranium fuels

– Magnox fuel (UK),

- High density metal fuels (Advanced Test Reactors)
 - Uranium Aluminium, Uranium Zirconium,
 Uranium Silicon, Uranium Molybdenum
- Analogous to Pu

Uranium Hydride

Proposed Hydride Formation

 $2U + 3H_2 \rightarrow 2UH_3$

Y. Ben-Eliyahu, M. Brill, M. H. Mintz, *J. of Chemical Physics*, 111 (1999) 6053-6060

Blisters seen at triple points

Blisters seen at high angle boundaries

60 um

Beam	Tilt	Mag	Scan	pА	HFW	5μm
30.0 kV	45.4°	12.0 kX	H 45.26 s	81.0	25.3 µm	

Significance of Blister Location

- At Triple points and high angle grain boundaries
- High diffusion paths?
- Free surfaces with lower density than crystalline material?
- Preferred growth direction?
- Where does it start in uranium metal?

in-situ experiment

- Thin film samples produced (by DC magnetron sputtering) to mimic interface without large masses reducing the activity to exempt limits
- Samples are produce a uniform homogeneous oxide thickness on a known metal thickness
- Utilised high angle diffraction to look at crystallinity and low angle reflectivity to look at layer interfaces

Experimental set up

- Used XMaS beamline at ESRF
- Furnace mounted on goniometer allowed remote temperature control (RT-200°C) and gas dosing (1000mbar of 4%H₂/Ar)

Introduction of H₂ Oxide Uranium Buffer Substrate

- U main orientation (110)
- U (002) intensity at approximately 10% of (110)
- UO₂ more intense predominantly (111) with some (200); higher UO_{2+x} oxides also observable
- Hydrogen Exposure
 - 84min 50 mbar gas mix (2 mbar H_2) at 80°C
 - Further 187min at 400 mbar gas mix (16 mbar H_2) at 140°C
 - And 156min 400 mbar gas mix (16 mbar H_2) at 200°C

140 °C exposure

200 °C exposure

Rate of Crystalline Removal

Oxide Uranium Buffer Substrate

Reflectivity

Reflectivity

X-ray Findings

- No identification of crystalline β -UH₃ (seen in bulk U experiments under similar conditions)
- Consumption of U metal (2 mbar P_{H2}, 80-140°C) monitored insitu by synchrotron XRD
- Preference of consumption of (110) over (002) demonstrated
- Oxide consumed and strained throughout with higher oxides (UO_{2+x}) also reduced
- Reflectivity shows reduction in U metal density material
- Increase in amount of UO₂ (10.97g/cm³) or UH₃ (10.95 g/cm³) density material
- Roughening of the U/UO₂ interface

STEM Bright Field

STEM High Annular Dark Field

EELS

Hydriding of Uranium

- Small partial pressure of H₂ and moderate temperatures over hours forms hydride
- Different Uranium crystallographic directions are preferentially consumed
- Amorphous hydride produced at the interface between U and UO₂
- No crystalline hydride observed

Acknowledgements

- DISTINCTIVE (EPSRC)
- R. M. Harker, AWE, Aldermaston, UK
- D. Wermeille, ESRF, Grenoble, France
- G.H. Lander, UTI, Karlsruhe, Germany
- University of Bristol:
 - Antonis Banos
 - Ross Springell
 - Tom Scott

Crystallographic Dependence

