Theme 1: AGR, Magnox and Exotic Spent Fuels

Theme Leads: Tom Scott and David Read

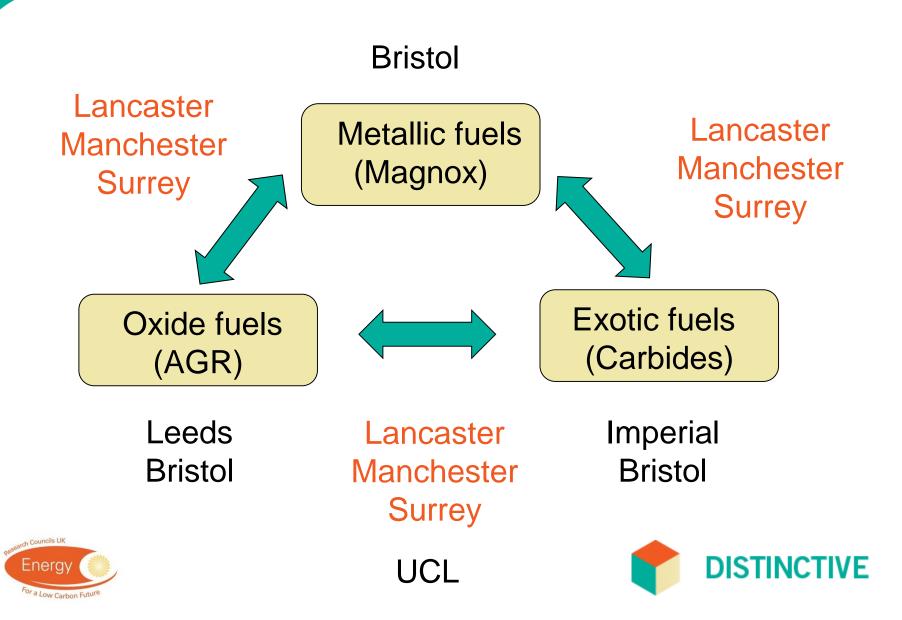
Universities of Bristol & Surrey

DISTINCTIVE THEMATIC MEETING 17th October, 2017 Penrith

Aims and Objectives

Aim:

To provide technical underpinning of management options for the UK's AGR, Magnox and Exotic Spent Fuels


Objectives:

- 1. Understand evolution of Magnox and exotic SF during recovery from aqueous storage, drying and repackaging
- 2. Develop spectroscopic methods for improved determination of SF dissolution and corrosion rates in water.
- 3. Determine optimum drying conditions for AGR fuels and subsequent surface reactivity and alteration of unclad UO_2 in dry storage
- 4. Determine consequences of radiation damage in SF, cladding and other waste forms for safe long term storage
- 5. Determine suitable waste management options for spent carbide fuels

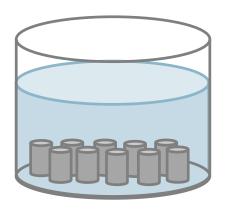
Interconnected study

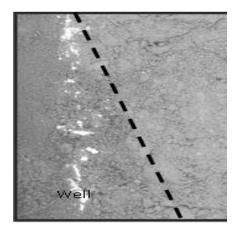
Challenges

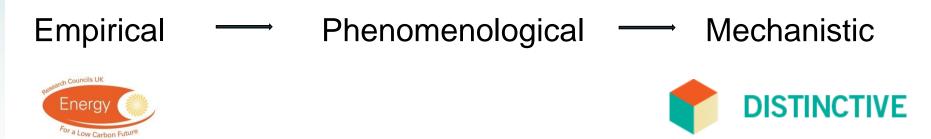
- If NDA's option is interim storage (~60y), assuming GDF in 2075
- Increasing & evolving inventory of SF
- Risks associated with long-term wet storage of AGR SF
- Also risks with transition & dry storage
- Magnox SF in Sellafield ponds needs retrieval and repackaging

Additionally

- End point is unknown
 - Timescale
 - Location
 - Design
- Important that decisions taken now don't compromise future options






Beyond Distinctive

Goals of Theme 1:

Develop mechanistic understanding of the processes affecting SF evolution

Beyond Distinctive

Goals of Theme 1:

 Develop an internationally respected and integrated team of experimentalists, theoreticians and modellers capable of tackling SF waste management problems

- Highly capable & growing science base
- State of the art facilities
- Well integrated programme for multidisciplinary crossworking across academic institutes (UK & Overseas)
- Effective collaboration with industry

Investigation of uranium corrosion in liquid H₂O environments under (initial) vacuum contained conditions

Antonios Banos

DISTINCTIVE Meeting – Penrith, Cumbria

October 17th 2017

The Challenge

Figure 1: Aerial view of the pile fuel storage pond (PFSP) in Sellafield, UK.

Figure 3: The pile fuel cladding silo (PFCS) in Sellafield.

Figure 2: Aerial view of the first-generation Magnox storage pond (FGMSP) in Sellafield, UK.

Figure 4: The Magnox swarf storage silo (MSSS) facility in Sellafield, UK.

The Problem

The video is showing the reaction of freshly-made UH_3 (~ 0.9 g of initial U mass) with 800 mbar of air.

[#]Interface Analysis Centre, University of Bristol,

The experiments of this work

- Mimic the corrosion conditions under a contained environment (extreme event of H₂ trapping).
- Non-irradiated natural U (Magnox-U) immersed in distilled liquid water.
- Temperature regimes (25, 45, 55, 70 °C).
- Initial vacuum contained conditions.
- 10 samples were examined. Each condition analysed multiple times with varying reaction times.

The aim

- To evaluate the kinetics of the U + $H_2O_{(I)}$ system under various temperature conditions.
- To characterise the post-reacted sample surfaces by analysing the arising gas and solid corrosion products of uranium corrosion.
- To identify if UH₃ is produced for each experimental reaction condition.
- To quantify (if possible) the amount of UH_3 , if present in the system.

Experimental set-up and procedure

Figure 5: Photographic image of the reaction pot set-up used in this work.

• Reaction water: 3x freeze-evacuate-thaw cycle.

- Uranium: Mechanically abraded to P2500 (~8 μm).
- Ceramic crucible was used to contain the water and the immersed sample.
- (Right end of set-up): Pressure-current transmitter with analogue output.
- (Left end of set-up): Free end to connect to the gas control rig.

Post reaction examination:

- Reacted uranium surface: FIB, SIMS, XRD and TPD combined with RGA analysis.
- Reaction water: pH measurements.

Results Reaction rate determination (H₂ generation)

Sample	Reaction time (hours)	Reaction rate 1 st regime (mgU.cm ⁻² .h ⁻¹)	Reaction rate 2 nd regime (mgU.cm ⁻² .h ⁻¹)	Reaction rate 3 rd regime (mgU.cm ⁻² .h ⁻¹)	Average reaction rate (mgU.cm ⁻² .h ⁻¹)
W25L	1147.7	n/a	0.0204 ± 0.0006	0.005 ± 0.00005	0.0107
W25L2	978.4	n/a	0.0096 ± 0.00005	n/a	0.0086
W45S	126	0.0185 ± 00005	$\textbf{0.0274} \pm \textbf{0.0002}$	n/a	0.0262
W45L	1621.6	0.0043 ± 0.0007	$\textbf{0.0137} \pm \textbf{0.0004}$	0.0243 ± 0.00009	0.0215
W45L2	1046	n/a	0.0102 ± 0.0001	n/a	0.0098
W55S	345	0.0276 ± 0.0005	0.0149 ± 0.0001	0.0095 ± 0.00004	0.0148
W55S2	397.2	n/a	$\textbf{0.0791} \pm \textbf{0.0001}$	n/a	0.0799
W55L	1618.2	n/a	0.0638 ± 0.00008	0.0517 ± 0.0003	0.0612
W70S	329	0.1035 ± 0.0006	0.1359 ± 0.0002	0.0986 ± 0.0003	0.1166
W70S2	436.3	0.0773 ± 0.0017	0.1084 ± 0.0019	$\textbf{0.0971} \pm \textbf{0.001}$	0.0996

'W': Liquid water

Middle numbers: Temperature of reaction

'S' and 'L': Short and long reaction time period

Results Reaction rate - Representative reaction slope

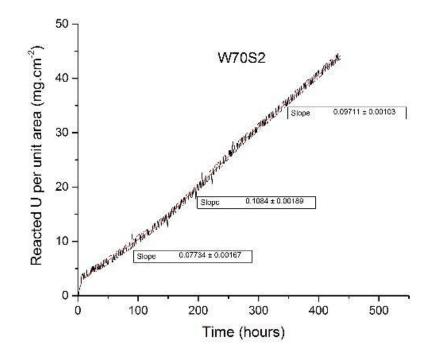


Figure 6: Corrosion progress of uranium immersed in liquid water (in mgU.cm⁻²), over reaction time (hours) for sample W70S2.

Results

FIB analysis - Reaction rate determination - Oxide thickness measurements

Sample	Average oxide thickness (μm)	Reaction rate derived from average oxide thickness measurements (mgU.cm ⁻² .h ⁻¹)	Reaction rate derived from H ₂ generation (mgU.cm ⁻² .h ⁻¹)
W25L	12.76	0.0107	0.0106
W25L2	1.87	0.0011*	0.0086
W45S	3.71	0.0285	0.0262
W45L	62.02	0.037	0.0215
W55S	14.81	0.0415	0.0148
W55L	166.02	0.0992	0.0612
W70S	91.76	0.2697	0.1166
W70S2	61.09	0.1354	0.0996

*W25L2 oxide flaked off leading to significantly smaller average thickness

- Higher reaction rate kinetics derived from oxide thickness measurements (FIB analysis) in comparison to H₂ generation analysis.
- H₂ deficiency in the gas phase!

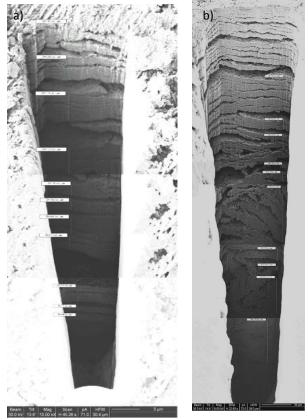


Figure 7: Focused ion beam (FIB) milling images of representative cross-sectional views for samples (a) W45L and (b) W70S

Results Reaction water pH measurements

Sample	pH of water at average temperature of reaction	pH of reactant water at average temperature of reaction	Difference in concentration of H ⁺ between original and reactant water (mole.lt ⁻¹)	Difference in H ₂ in reactant water (mmol)	Working/ reaction volume (cm³)	Pressure increase if excess H ₂ diffused out to the gas phase (mbar)
W25L	6.85	Not measured	n/a	n/a	n/a	n/a
W25L2	6.85	6.13	5.98E-07	1.2E-06	84.81	0.0004
W45S	6.57	Not measured	n/a	n/a	n/a	n/a
W45L	6.53	6	6.98E-07	1.4E-06	84.77	0.0004
W45L2	6.55	6.18	3.87E-07	7.75E-07	84.80	0.0002
W55S	6.45	5.96	7.37E-07	1.47E-06	84.61	0.0005
W55S2	6.44	6.07	4.89E-07	9.78E-07	80.91	0.0003
W55L	6.45	6.12	4E-07	7.992E-07	84.76	0.0003
W70S	6.29	5.75	1.27E-06	2.54E-06	180.05	0.0004
W70S2	6.3	6	5.08E-07	1.02E-06	84.62	0.0003

- If generated hydrogen remained dissolved in the water (in the form of H⁺ ions), then it would be expected that the pH of the water would drop.
- pH indeed dropped but only inconsiderably!

Results SIMS analysis

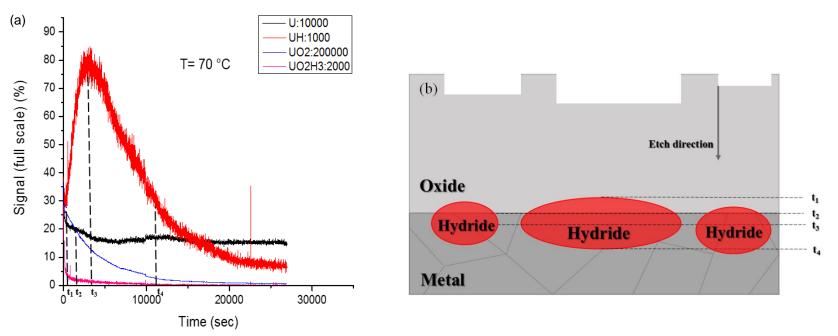


Figure 8: Showing on (a) Mass ion depth profiling for uranium oxidised in liquid water at 70 °C. Ga⁺ primary ion beam, 25 keV, 3 nA positive ion mode, 45 ° angle of incidence and (b) a 2D schematic of the cross-sectional view of the same sample taking into account the data from (a). From the graph and 2D illustration, an almost linear increase in the UH signal (red line) may be observed, reaching its maximum value at the metal oxide interface (in the graph, where the blue and black curves intersect). UOH, UOH₃, UO₂H₂ and UO₂H₃ clusters were also traced at and/or near the gas-oxide interface indicating a H₂-rich oxide.

Results XRD analysis

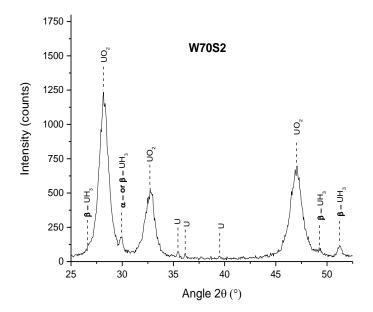


Figure 9: Raw X-ray diffraction (XRD) spectra for sample W70S2. The analyses were performed with a Cu-K α source at 8 keV, between 25 ° and 52.5 ° angle 2 θ , 0.05 step and 5 sec dwell time.

• UH₃ peaks are observed in the spectra.

Results TPD – RGA analysis

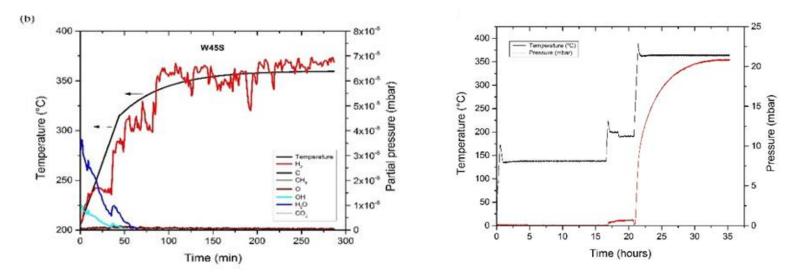


Figure 10: Residual gas analysis (RGA) profiles of the evolved gases for decomposition of reacted uranium between 200 - 450 °C for W45S.

Figure 11: Pressure and temperature vs. time plot from the thermal process (sample degassing) of W45L.

Thermal process: **Step 1** (~130 °C, dynamic vacuum) \rightarrow **Step 2** (~200 - 230 °C, isolated volume) \rightarrow Vacuum \rightarrow **Step 3** (370 - 420 °C, isolated volume). **(Based on Danon et al.)**

- At **Step 2** a mixture of various gases dominated by H_2O , OH^- and H_2 is produced.
- Only H₂ is degassed during the final stage of the thermal process.

A. Danon, J. Koresh, M. Mintz, Temperature programmed desorption characterization of oxidized uranium surfaces: Relation to some gas-uranium reactions, Langmuir, 15(18):5913-5920, 1999.

Results Quantification of water-formed UH₃

Sample	Reaction time (hours)	Final T of decomposition (K)	Pressure increase due to UH ₃ decomposition (mbar)	mmol of inter-layer hydride	mmol of bulk UH ₃	mmol of UO ₂	Percentage ratio of UH ₃ to overall solid corrosion products (%)
W45S	126	632.8	8.2	8.2E-05	0.0086	0.05	14.6
W45L	1621.6	638.6	20.9	4.4E-05	0.0549	0.281	16.3
W45L2	1046	671	7.2	3.8E-05	0.0174	0.0714	19.6
W55S	345	626.7	8.9	8.1E-05	0.0098	0.0815	10.7
W55S2	397.2	672.1	1.9	4.1E-05	0.0037	0.2354	1.6
W55L	1618.2	676.3	11.3	4.6E-05	0.0274	0.8492	3.1
W70S	329	613	10.8	8.7E-05	0.0124	0.6154	2
W70S2	436.3	673.1	13.2	8.3E-05	0.031	0.6696	4.4

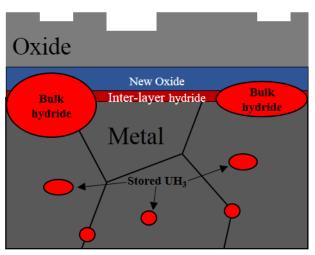


Figure 12: Types of hydrides present on watercorroded uranium metal under contained conditions.

n bulk $_{UH3} = n$ overall $_{UH3} - n$ stored $_{UH3} - n$ inter-layer $_{UH3}$

Summary - Discussion

- Bulk-UH₃ forms at the metal-oxide interface, on the majority of the samples. Limited UH₃ formation for the samples corroding at 25 °C.
- The relative amount of UH₃ to the overall solid corrosion products was determined for each sample and a percentage ratio was derived. It was found that lower temperature reaction conditions yielded higher UH₃ proportions. However, the absolute UH₃ quantities are markedly higher on the higher temperature samples.
- Considerably slower corrosion kinetics (H₂ generation method) in comparison to the literature.
- The activation energy (E_{α}) was measured at 50 kJ.mole⁻¹.
- Through pressure generation (rate plots) and post-examination analysis (bulk-UH₃ formation) it was suggested that over a critical threshold headspace pressure (calculated to be ~500 mbar): either (a) H₂ evolution is partially suppressed by the headspace pressure or (b) there is a consumption of H₂ gas from the headspace concurrent with new gas being released by continued metal corrosion. It is believed that both these processes lead to enhanced 'bulk' UH₃ formation in the system.

Thank you!

#Interface Analysis Centre, University of Bristol,

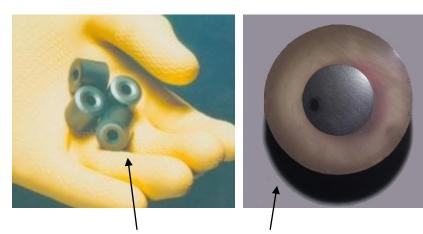
The Behaviour of Advanced Gas Reactor Simulated Spent Nuclear Fuels in Wet Interim Storage Conditions

17/10/2017 Elizabeth Howett Supervisors: Prof Colin Boxall, Dr Richard Wilbraham and Dr David Hambley (NNL)

- Introduction
- Cyclic voltammetry and OCPs of uranium dioxide and SIMFUELs in:
 - 0.5M Na₂SO₄
 - Simulant pond water
- Electrochemical impedance spectroscopy and Mott Schottky analysis
- Conclusions and further work

PhD Project Incentive and Objectives

- Fuel has been successfully stored for period of 10-20yrs however may extend to 100yrs
- Cladding can be breached due to stress corrosion cracking or damaged during dismantling
- Evolution of the cladding and fuel surfaces on exposure to pond water are considered corrosion processes
- Assess the validity of extended storage periods without extra containment

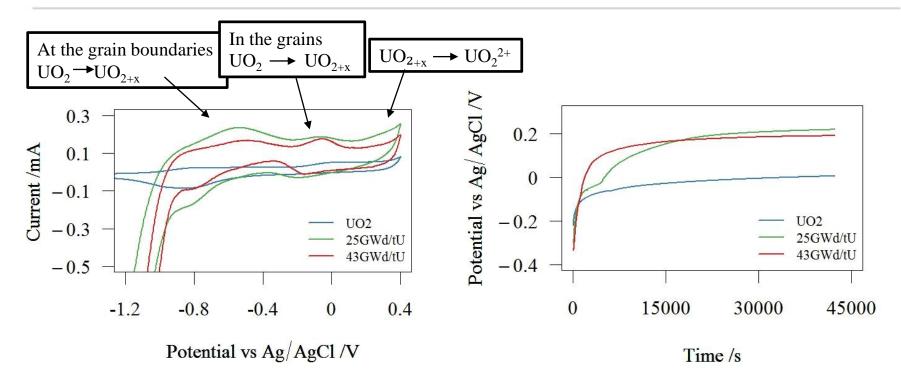


Materials and experimental conditions

• Pond water chemistry: pH≈11.4

Na⁺	Ca⁺	Cl⁻	SO4 ²⁻	K⁺	OH⁻
5.4mM	2μΜ	30µM	2μΜ	5μΜ	Balance

• AGR SIMFUEL sample composition:



AGR fuel pellets

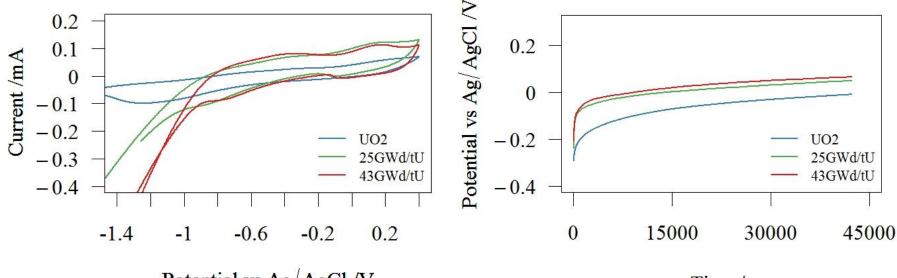
UO₂ electrode

	25 GWd/tU	43 GWd/tU
	95.705	92.748
Nd_2O_3	0.761	1.284
ZrO ₂	0.793	1.276
MoO ₃	0.614	1.027
RuO ₂	0.512	0.892
BaCo ₃	0.328	0.576
CeO ₂	0.297	0.499
PdO	0.195	0.425
Rh ₂ O ₃	0.080	0.115
La ₂ O ₃	0.156	0.256
SrO	0.081	0.126
Y ₂ O ₃	0.095	0.149
Cs ₂ CO ₃	0.311	0.495
TeO ₂	0.073	0.130

Electrochemical behaviour in 0.5M Na_2SO_{4} , pH \approx 5.6

Lancaster 🎦 University

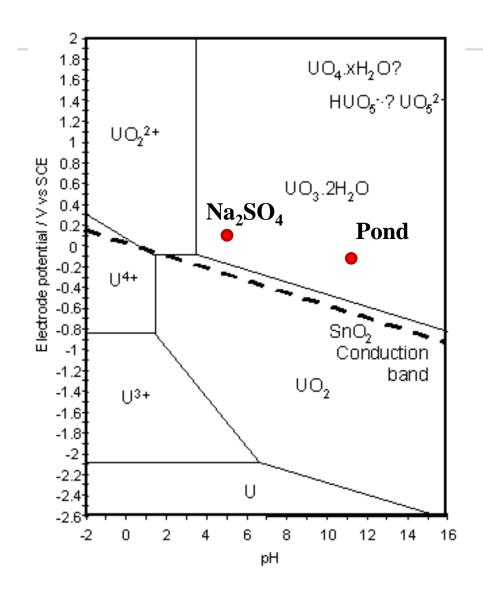
Figure 1: Electrochemical behaviour in 0.5M Na₂SO₄, cyclic voltammetry (left) and open circuit potentials (right)

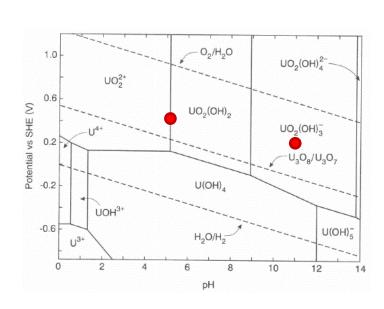

- Addition of lower valent species increases conductivity
- Fluorite lattice stabilized by further doping
- OCP lies in region were dissolution begins to occur

Electrochemistry in simulant pond water, pH ≈ 11.4

Comparison to Na₂SO₄:

- Suppression of the dissolution as UO_2^{2+}
- Decrease in the OCP, potential now lies in a region where an oxide layer is developing on the surface




Potential vs Ag/AgCl/V

Time /s

Figure 2: Electrochemical behaviour in simulant pond water, cyclic voltammetry (left) and open circuit potentials (right)

Electrochemical impedance spectroscopy (EIS)

- Measure of the resistance and capacitance developed on the electrode system due to the formation of an oxide layer on the electrode surface
- A small sinusoidal potential is applied to the working electrode and the frequency is scanned between 100,000 and 0.1Hz
- Nyquist plots show the frequency response of the system, give information on the stability of a system. It is a plot of the real versus imaginary components of the impedance
- Equivalent circuit models are used to extract information on the resistance and capacitance of a system from the Nyquist plot

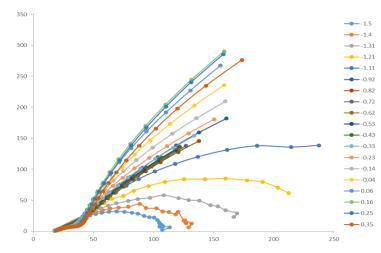


Figure 3: Example of a Nyquist plot for 25GWd/tU in Na₂SO₄

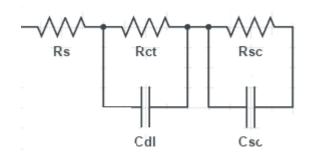
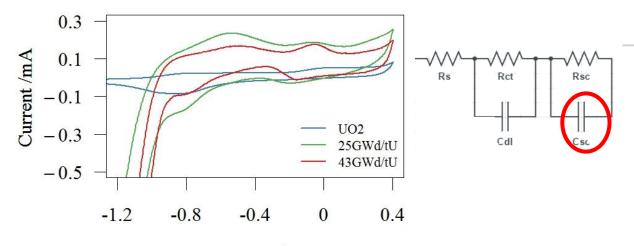
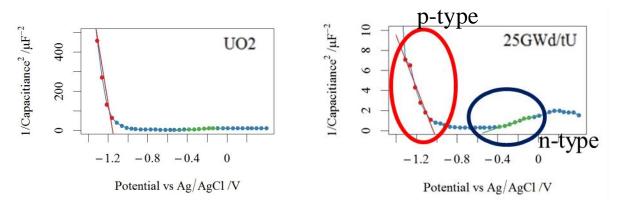


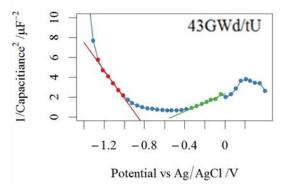
Figure 4: Electrical equivalent circuit model used to represent an electrochemical interface undergoing corrosion


Mott Schottky plots for semiconductors

- Uranium dioxide has semiconductor properties
- Semiconductor electrolyte interface has an associated charge area known as space charge layer
- There is an apparent capacitance associated with the space charge layer

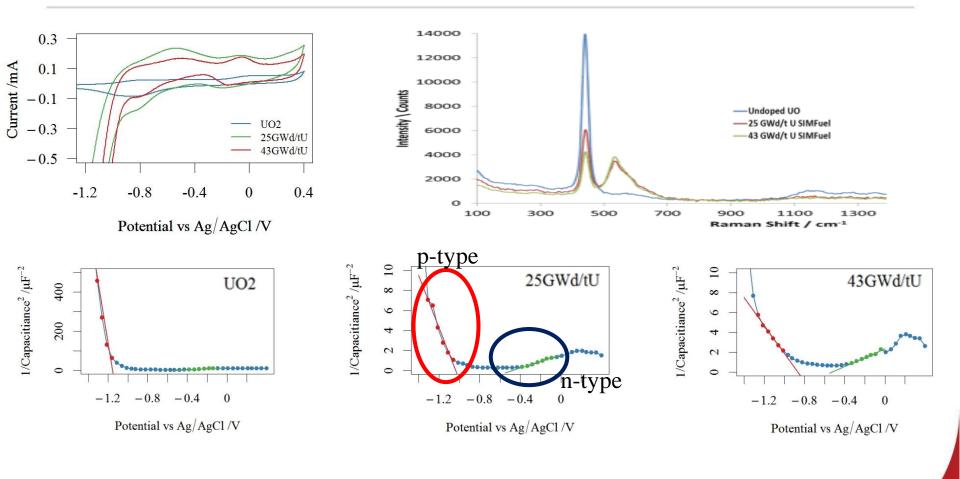
• Mott Schottky equation:
$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 q N_D} \left(-E + E_{FB} + \frac{kT}{q} \right)$$


Mott Schottky plots in Na₂SO₄



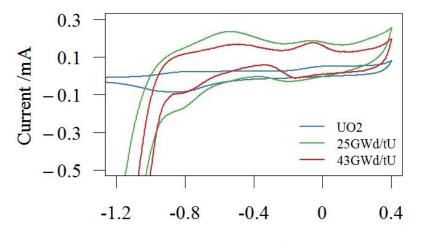
N-type semiconductors have a positive slope whereas p-type semiconductors have a negative slope

Potential vs Ag/AgC1/V



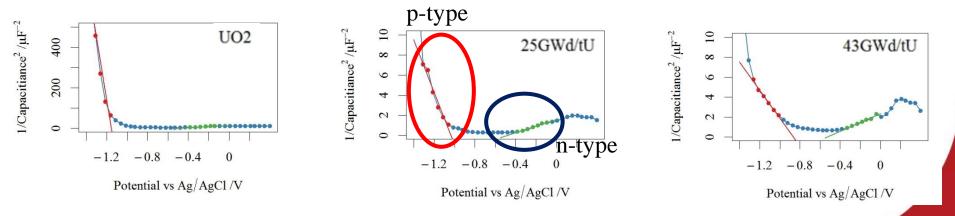
$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 q N_D} \left(-E + E_{FB} + \frac{kT}{q} \right)$$

Mott Schottky plots in Na₂SO₄



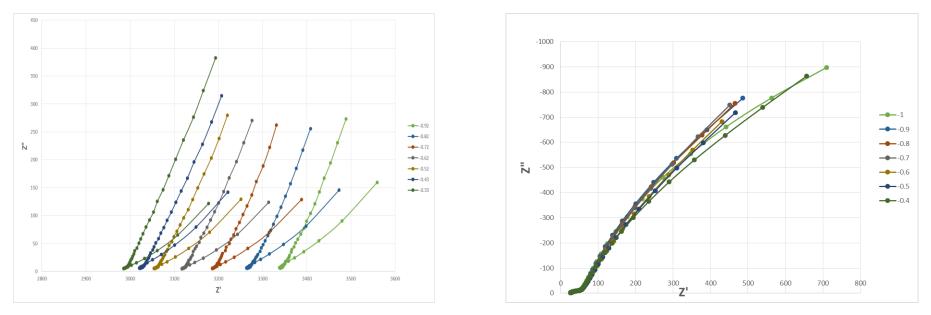
 $\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 q N_D} \left(-E + E_{FB} + \frac{kT}{q} \right)$

Mott Schottky plots in Na₂SO₄

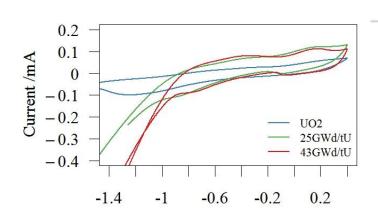


Potential vs Ag/AgCl/V

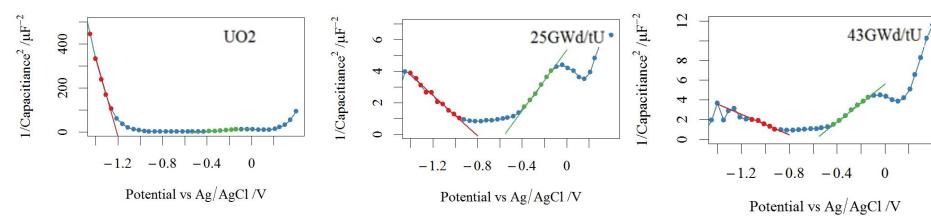
	N_D/m^{-3}	E _{FB} /V vs Ag/AgCl	
	p-t	уре	
UO ₂	3.02e23	-1.2	
25 GWd/tU	3.78e25	-1.06	
43 GWd/tU	6.82e25	-0.9	
	n-type		
UO ₂	3.51e25	-0.52	
25 GWd/tU	2.76e26	-0.5	
43 GWd/tU	2.43e26	-0.55	

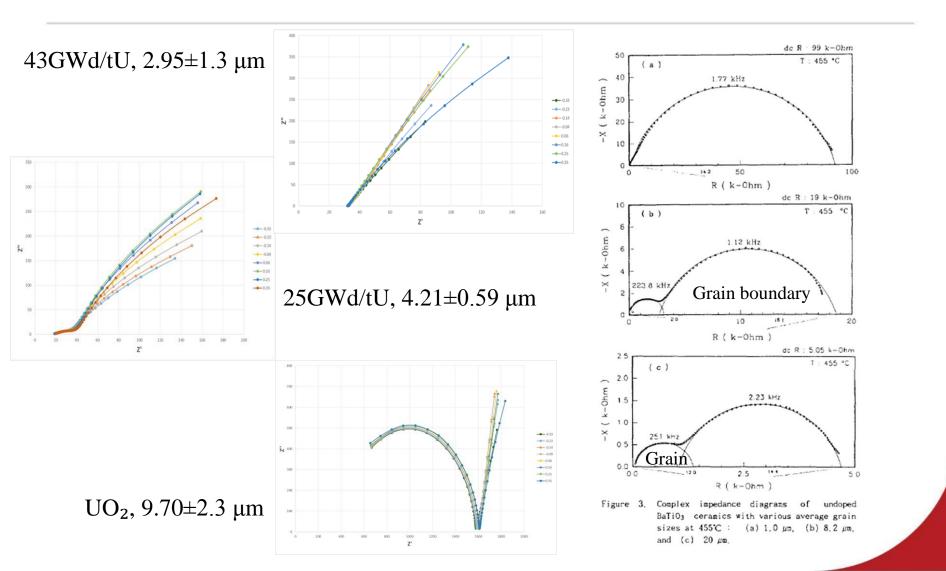

$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 q N_D} \left(-E + E_{FB} + \frac{kT}{q} \right)$$

Need for the use of an inert electrolyte in EIS tests


- A problem arises due to the IR drop at the electrode surface in resistive solutions
- Problem is fixed by adding a high concentration of inert electrolyte

Left: Nyquist plot for 25GWd/tU in simulant pond water, pH \approx 11.4 Right: Nyquist plot for 43GWd/tU in simulant pond + 0.5M Na₂SO₄, pH \approx 11.4


Mott Schottky plots in simulant pond water


Potential vs Ag/AgC1/V

	N_D/m^{-3}	E _{FB} /V vs Ag/AgCl	
	р	-type	
UO ₂	5.62e23	-1.24	
25 GWd/tU	1.99e26	-0.77	
43 GWd/tU	1.94e26	-0.74	
	n-type		
UO ₂	2.49e25	-0.45	
25 GWd/tU	1.09e26	-0.56	
43 GWd/tU	1.05e26	-0.57	

Effect of Grain Size

- In dosed storage pond water at pH ≈11.4 dissolution of the uranium dioxide matrix is suppressed
- Doping uranium dioxide increases the p-type character, driven by the increase in x-value and the insertion of lanthanides into the matrix
- At the potentials interest, in terms of corrosion susceptibility in pond water, an n-type system occurs as the surface transforms to cuboctrahedral U_4O_9
- EIS experiments may be effected by the grain size difference between the SIMFUELs and the pure UO₂, thus understanding the fundamentals of film growth for real SNF it may be more beneficial to look at the EIS behaviour of pure UO₂

Future Work

- Comparison of the electrochemical behaviour of SIMFUELs with that of real irradiated fuel
- Experiments using the next batch of SIMFUELs where the grain size and porosity is closer to the values expected in real SNF
- Studies using U₄O₉

Acknowledgements

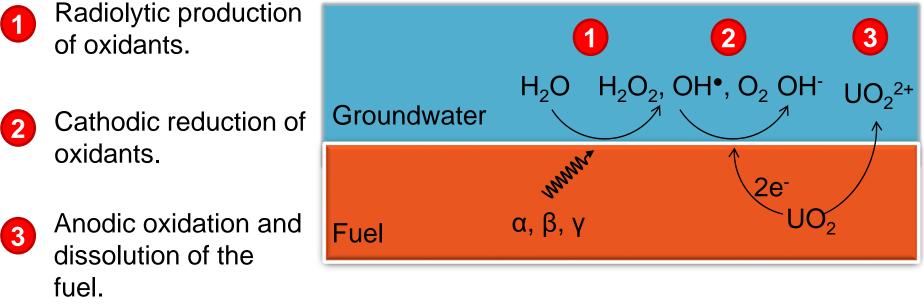
Nuclear Decommissioning Authority

A fundamental approach to investigating the radiolytic dissolution of UO₂

Sophie Rennie

Interface Analysis Centre, University of Bristol, Bristol, BS8 1TL, UK. Email: <u>sophie.rennie@bristol.ac.uk</u>

Distinctive Theme Meeting Rheged Centre 17th October 2017



Corrosion of UO₂

Problem: Dissolution of spent UO₂ fuel on exposure to water, resulting in the release of radionuclides ^[2].

The primary mechanism of UO_2 corrosion is **oxidative dissolution** ^[4]:

$$UO_2 \rightarrow UO_{2+x} \rightarrow UO_2^{2+x}$$

[4] D. W. Shoesmith, J. Nucl. Mater. 282, (2000).

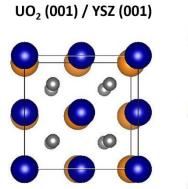
A Thin Film Approach

Bridging the gap between experimental investigations on complex spent fuel materials and idealised modelling studies.

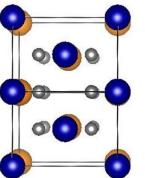
Engineered for purpose

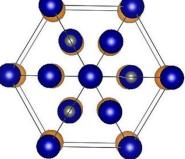

- Single crystal or polycrystalline
- Thickness range 0.1 500 nm
- Stoichiometry control

Idealised surfaces


- Roughness < 10 Å (rms)
- Enhanced surface sensitivity

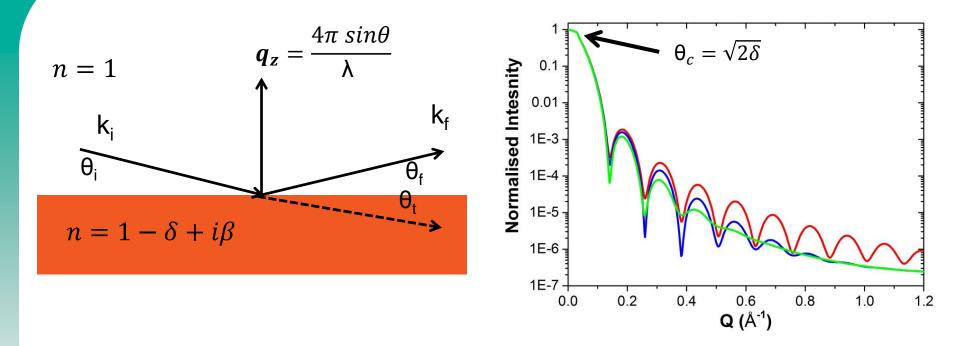
Low activity


Classification: exempt or accepted



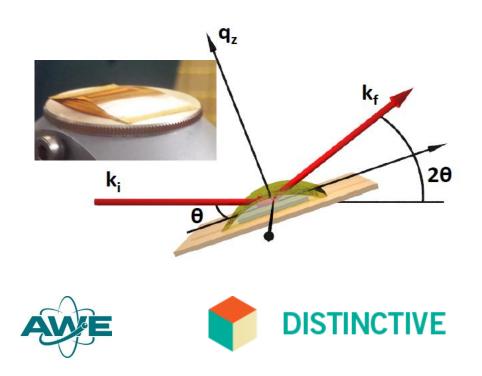
UO₂ (110) / YSZ (110)

UO₂ (111) / YSZ (111)



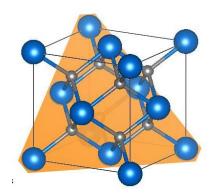
X-ray Reflectivity

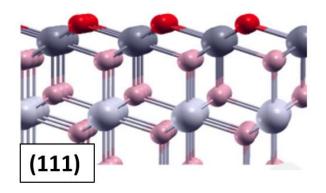
- 1) Electron density as a function of depth.
- 2) Layer thickness
- 3) Interfacial roughnesses

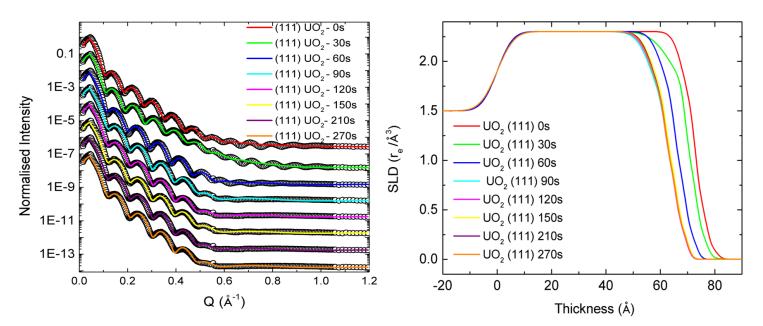

Synchrotron Induced Dissolution

Ingredients required for UO₂ dissolution:

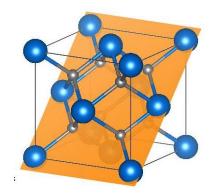
- H₂O / UO₂ interface
- Radiation source: α, β, γ, **x-rays**

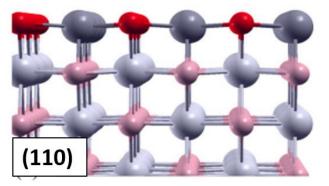

The x ray beam was used as: **A source** – to radiolyse the water, **A probe** – to investigate changes in surface morphology using XRR.

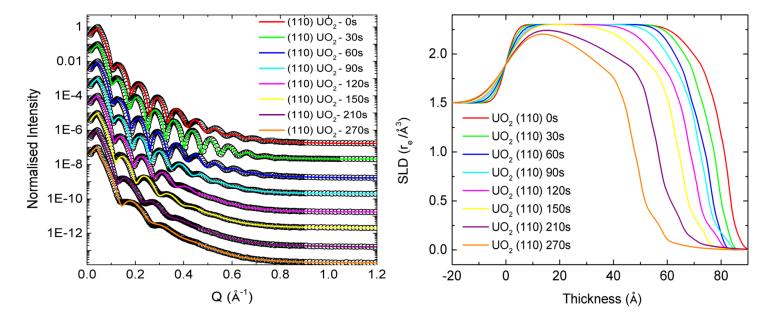




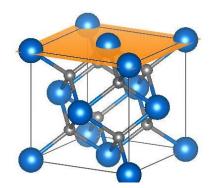
Dissolution of (111) – oriented UO₂

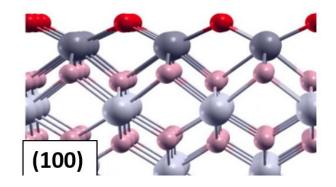

- Most stable surface
- O terminated bulk
- Non polar



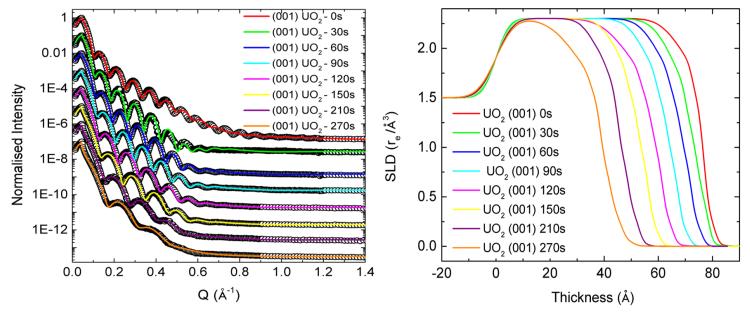


Dissolution of (110) – oriented UO₂

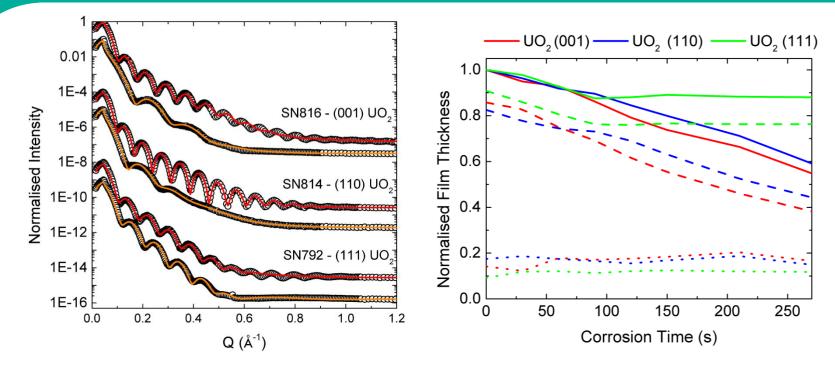

- Stable surface
- Stoichiometric termination
- Bulk like, with outward relaxation of the oxygens
- Neutral



Dissolution of (001) – oriented UO₂

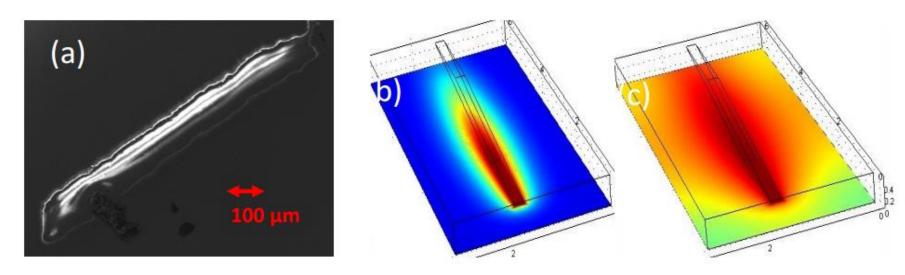


Least stable surface


DISTINCTIVE

- Polar
- Formation of O overlayers

Orientation Dependence



	(001)	(110)	(111)
Δt _{uo2} (Å)	-38.1 ± 0.8	-32.9 ± 0.3	-11 ± 0.9
Δt _{uox} (Å)	1.6 ± 2.8	-2.2 ± 0.6	-1.9 ± 1.1
Δt _{total} (Å)	-36.5 ± 3.6	-35.1 ± 0.9	-12.9 ± 2

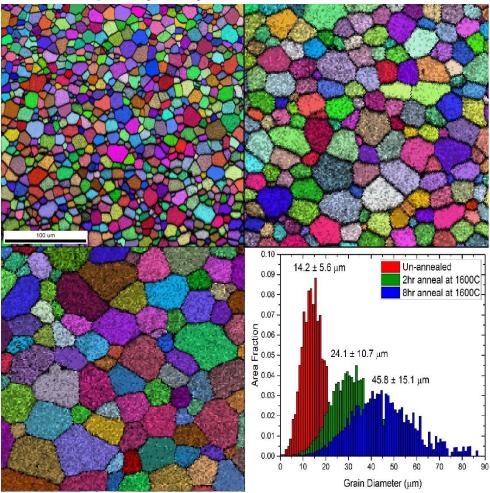
Remaining Question

(a) SEM image of a corroded UO2 single crystal thin film,(b) and (c) are images of the corrosion footprint after 500 s, as calculated using finite element modelling, including H_2O_2 surface diffusion and bulk diffusion constants, respectively [5].

Why surface diffusion?

Beam enhanced surface effect – photocatalysis?
 A more reactive short lived oxidising species

[5] R. S. Springell S. Rennie et al., Faraday Discussions (2015) DOI: 10.1039/C4FD00254G.



Future Work

Comparative polycrystalline studies

DISTINCTIVE

Future Work

Comparative α radiation study, to elucidate the role of individual oxidant species

Radiation	$G(H_2O)$	$G(H_2)$	$G(H_2O_2)$	$G(e_{aq}^{-})$	$\mathrm{G}(\mathrm{H}^{\bullet})$	$\mathrm{G}(\mathrm{OH}^{\bullet})$	$\mathrm{G}(\mathrm{HO}_2^{\bullet})$
γ , fast β	-0.43	0.047	0.073	0.28	0.062	0.28	0.0027
$12 \text{MeV} \alpha$	-0.294	0.115	0.112	0.0044	0.028	0.056	0.007

 Comparative technique for investigating the corrosion properties of potential ATFs

Acknowldegments

R. Springell, J. E. Darnbrough, E. Lawrence Bright, J. Sutcliffe, I. Griffiths, L. Costelle C. A. Stitt & T. B. Scott

R. Burrows & H. Sims

P. Thompson & D. Wermeille

J. Rawle & C. Nicklin

C. A. Lucas & E. Cocklin

W. J. Nuttall

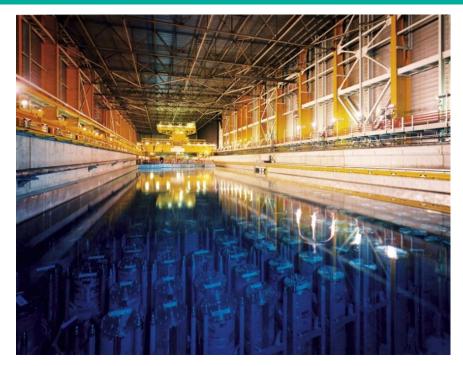
G. H. Lander

G. Allen, D. Geeson, J, Glasscott

Transitioning of Spent AGR Fuel from Wet to Dry Storage

James Goode University of Leeds

Theme 1 Distinctive Meeting 2017 17th October 2017 Rheged Centre, Cumbria


Introduction

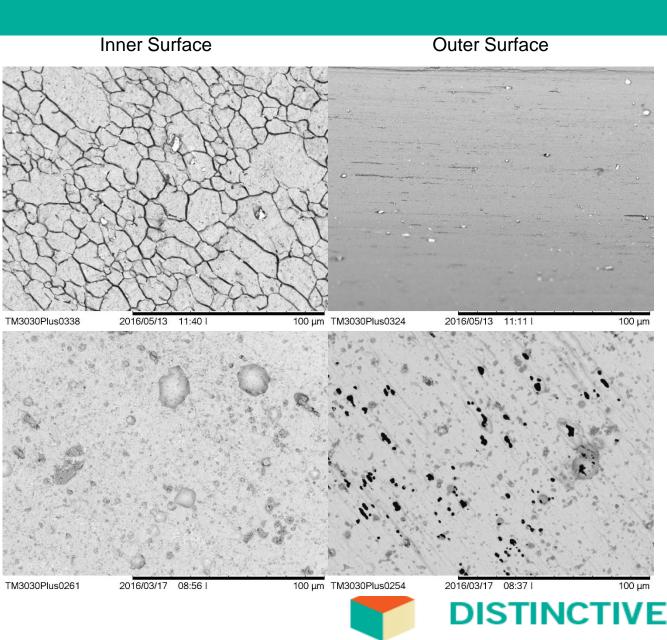
- After decades of use large quantities of nuclear fuel has accumulated in storage ponds;
- Fuel can not be stored in ponds indefinitely;
- In many countries dry storage of spent nuclear fuel (SNF) is used as an interim measure;
- Key requirements for dry storage are criticality prevention, integrity maintenance and retrievability;
- All of these are affected by corrosion and hence the interaction with water.

J. Kyffin, Technological Development to Support a Change in the United Kingdom's Strategy for Management of Spent AGR Oxide Fuel, in: Proceedings of the International Conference on Management of Spent Fuel from Nuclear Power Reactors, IAEA, Vienna, 2015.

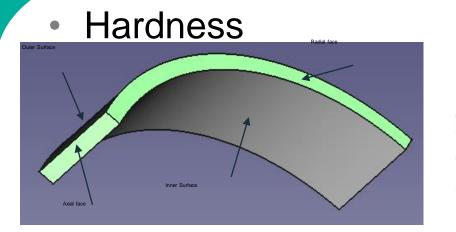
"Ongoing Receipt of AGR Fuel | Sellafield Ltd." Accessed July 29, 2014. http://www.sellafieldsites.com/solution/spent-fuel-management/ongoing-receipt-of-agr-fuel/.

Thesis Outline

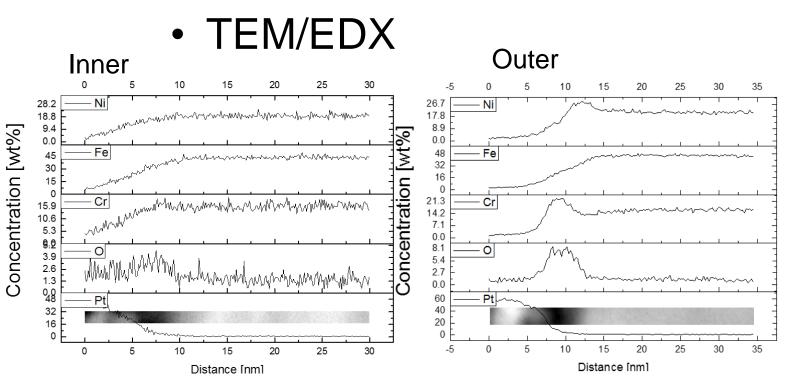
- Part 1-Sample Preparation
 - What does the fuel look like when removed from the pond and can I reproduce this.
- Part 2-Vacuum and Flowed Gas Drying
 - A comparison of vacuum and flowed gas drying techniques.
- Part 3-End Point Analysis
 - What indicators are there that drying has completed.



Bound water

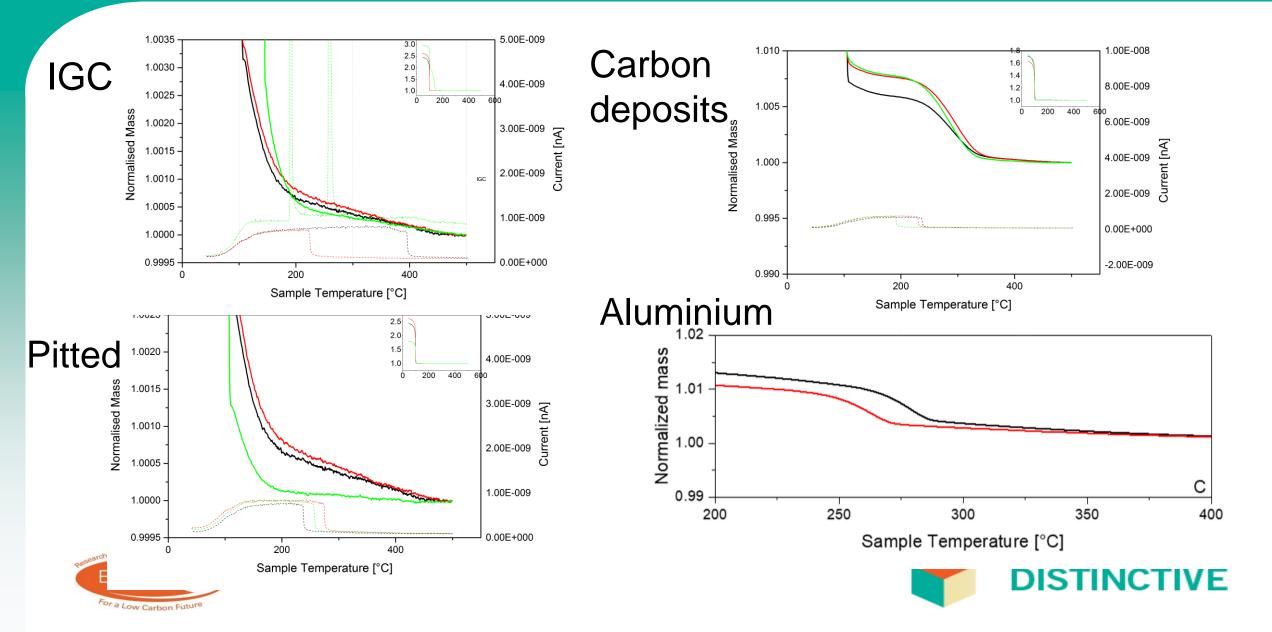

IGC

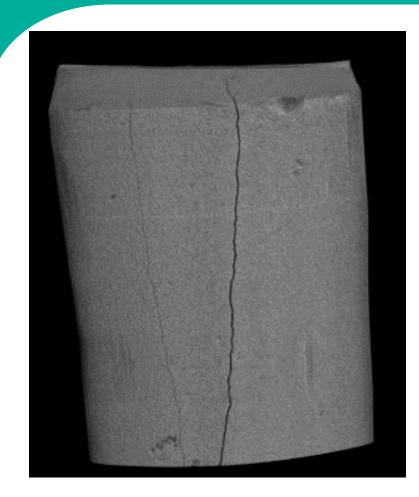
- Numerous samples prepared.
 - IGC (HNO₃ + Cr(VII))
 - Pitted (FeCl₃)
 - As received.
 - Carbon deposits.
- Dried by TGA with MS.
- Aluminium samples show Pitted oxide dehydration.


Surface Differences

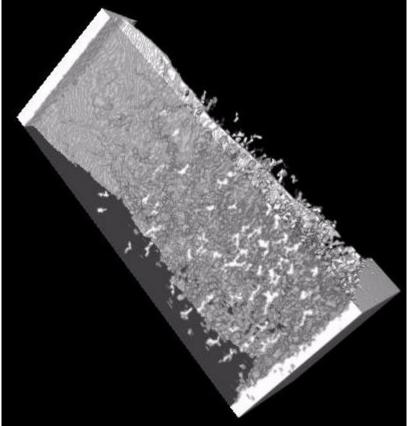
Outer Surface			Inner Sur	Inner Surface		
Position	Radial	Axial	Position	Radial	Axial	
	[Hv 0.05]	[Hv 0.05]		[Hv 0.05]	[Hv 0.05]	
1	284.3	284.9		1 278.2	222	
2	269.6	288.3		2 180.9	268.4	
3	271.6	300.9	:	3 233.9	253.6	
4	259	286.3		4 239.2	239.9	
5	279.9	270.5	:	5 249.2	190.5	
Average	272.88	286.18	Average	236.28	234.88	
	8.007788	8.83825		28.88295	24.61269	
RSD	3%	3%	RSD	12%	10%	
Average				Average 235.58		
earch Coun	cils UK					

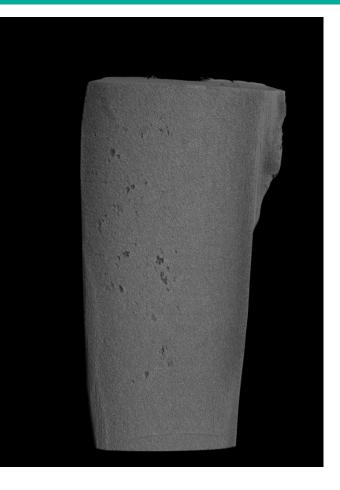
Enera

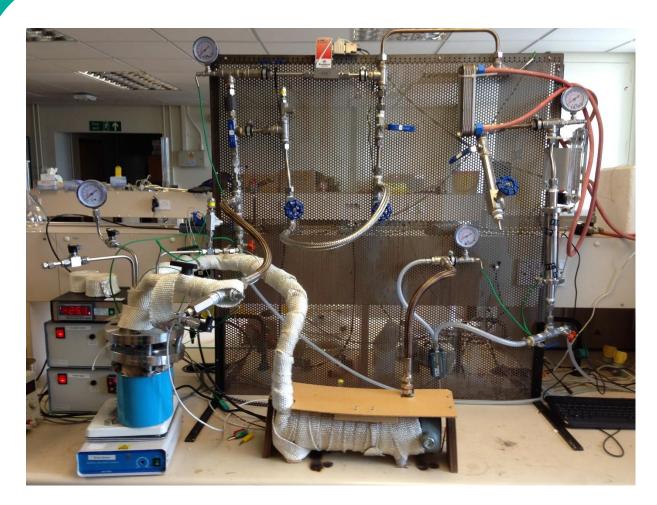

For a Low Carbon Future


Outer surface is harder and has clearer oxide layer which appears thicker than inner. Outer shows evidence of multiple layers including Si rich band.

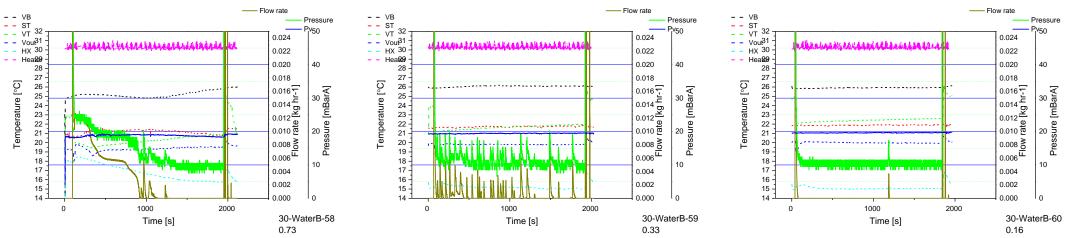
Adsorbed Water

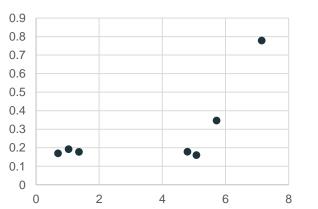


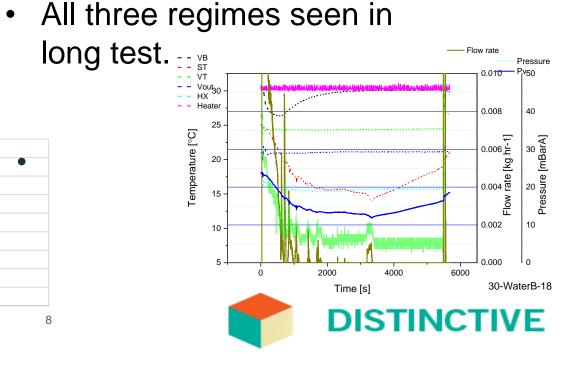

Stress Corrosion Cracking



Drying Rig

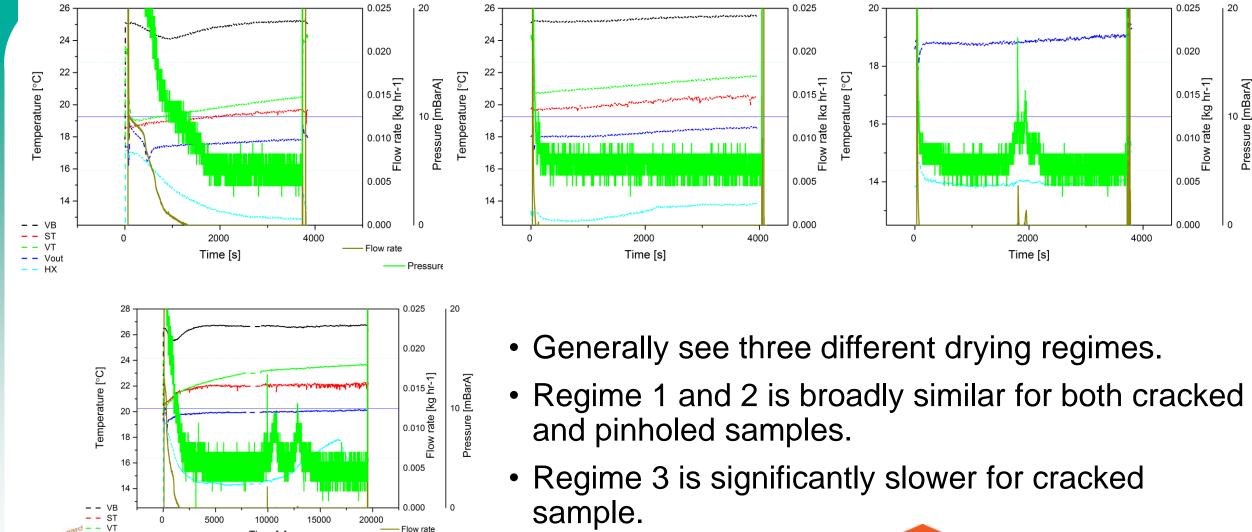






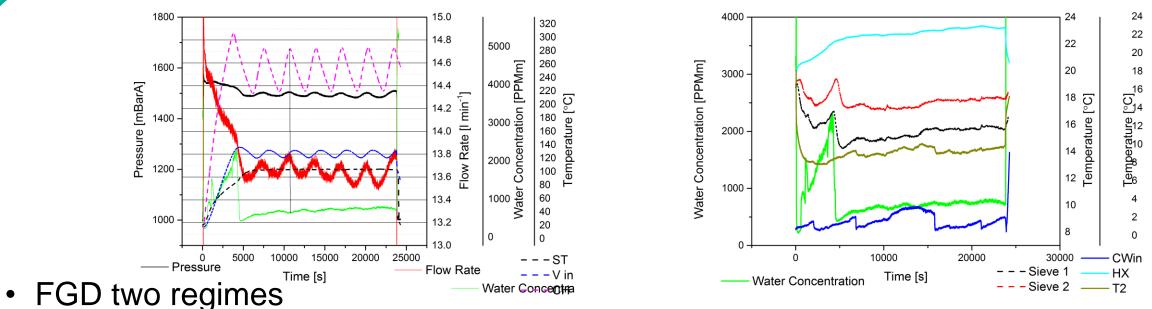
Vacuum Drying

- Three drying regimes- reducing drying rate.
- Generally show similar drying rates for different TP's.



Cracked Sample Drying

Time [s]


For a Low Carbon Future

Pressure

Flowed Gas Drying

- initial regime as liquid water forced out and boiled off
- Evaporation
- Boiling point often not reached despite possibility of pressure drop across defect.
- Drying rates of CSS and SSP again comparable at regime 1 but not at 2.

Drying Summary

- When TP full there is little difference in rates between two methods or indeed between the two TP's.
- When the TP is empty (evaporation only) VD of pinholed TP is 50% faster for pinholed and 4-10 faster for cracked.
- If the cost of drying is counted then VD remains most efficient.
- Efficiencies likely to be higher for hotter fuel in which case VD may not require any external heating.
- FGD primarily used to prevent overheating.

End Point Determination

- Currently end point determination requires a vacuum rebound test.
- Is it possible to use other data to confirm that an end point has been reached.
- Early indications suggest that from pressure and dew point readings it is possible.

Further Questions

- How does scaling up impact heat transfer?
- How does presence of pellets inside cladding impact drying rate?
- How much slower are much smaller defects ($\sim 2\mu m$)?
- How dry does fuel need to be?
- Details on manufacturing of fuel?

Oxidation of UC: an *in situ* high temperature environmental scanning electron microscopy study

Claudia Gasparrini ^a, Renaud Podor ^b, Denis Horlait ^{a,c}, Michael J Rushton ^a, Olivier Fiquet ^d, Duncan Coppersthwaite^e, and William Edward Lee ^a

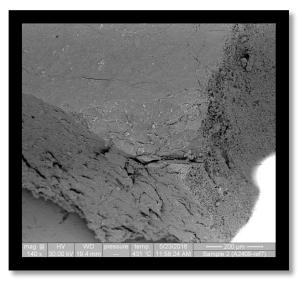
^a Centre for Nuclear Engineering, Dpt. Materials, Imperial College London, London, UK

^b Institut de Chimie Séparative de Marcoule, BP17171, 30207 Bagnols-sur-Cèze, France

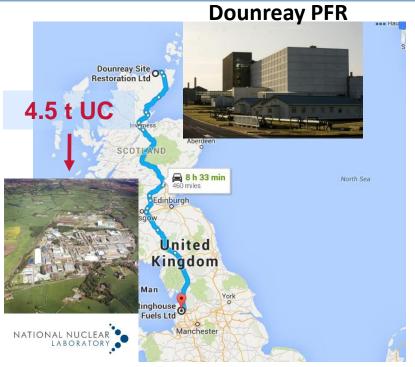
^c CNRS, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, 33175 Gradignan, France

^d Commissariat a l'Energie Atomique (CEA), Cadarache, France

^e National Nuclear Laboratory, Preston, Lancashire, UK



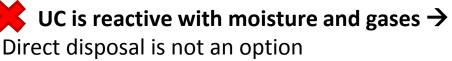
STINCTIVE

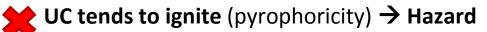

EPSRC Engineering and Physical Sciences Research Council

Centre for Nuclear 🔽 📉

Engineering

Exotic Fuels: fuel legacy from Prototype Fast Reactor (PFR)


4.5 tonne of Depleted UC are stored at NNL waiting for treatment


Uranium carbide (UC) was used in the '50s in the UK (Dounreay Prototype Fast Reactor) and now has been reconsidered as an advanced nuclear fuel thanks to its :

High thermal conductivity (25 W/(m K) from 1150 – 2250 °C)

 $\sqrt{}$ Higher fissile material density (1.34 times UO₂)

However it presents further challenges compared to most common UO_2 and $(U,Pu)O_2$:

A solution for disposal? Oxidation!

A suitable oxide form needs to be achieved: C content, specific surface area (SSA) and humidity kept under control

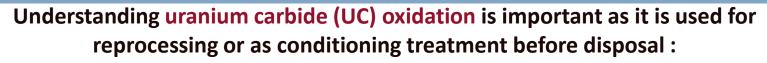
Research problems

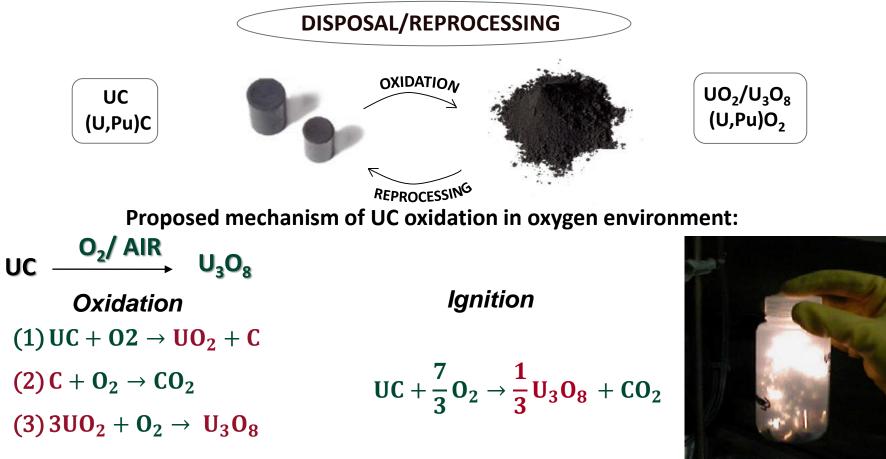
Problems encountered at NNL (National Nuclear Laboratory) during past oxidation experiments :

1) Complete conversion to an oxide can not be achieved

No matter the high temperatures (900 -1050°C) and many hours of exposure in the furnace

2) Carbon is found in the oxide


Could either be C of UC left


3) What is the mechanism of oxidation of UC?

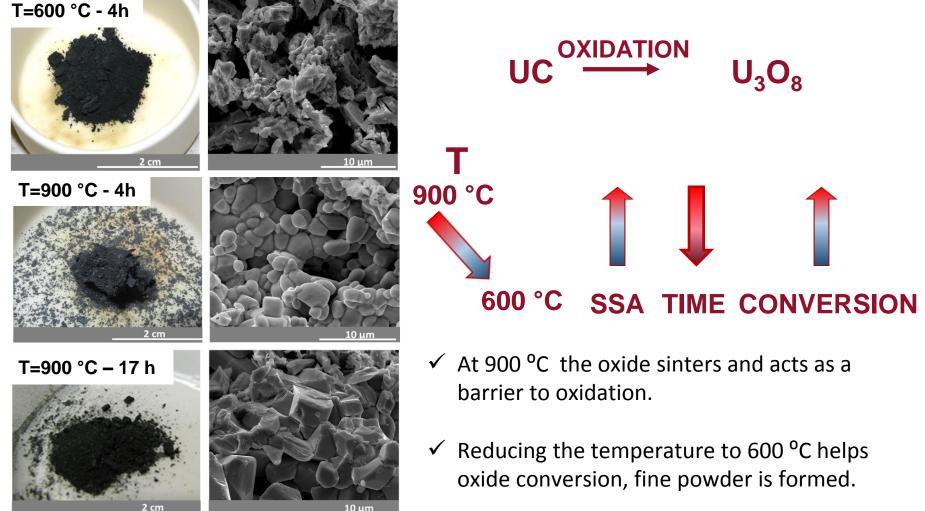
4) UC ignition mechanism

Not clear what are the controlling factors (at least 12 factors have been listed in literature!), temperature control in furnace oxidation becomes difficult

Oxidation of UC: a key step prior immobilisation

* Iyer, V. S. et al. "Oxidation behavior of carbide fuels". Nucl. Technol. 91, 388–393 (1990).

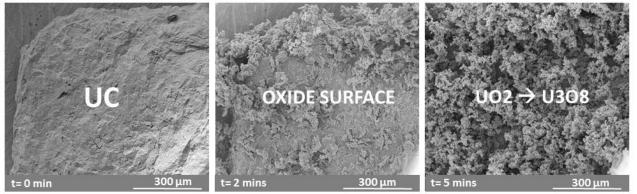
Conversion and C% vs Temperature



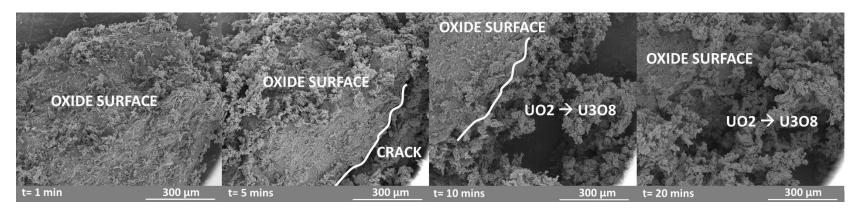
	Mass (g)	T (°C)	Heating rate (°C/min)		Time in furnace (h)	Ø (mm) UC core		Carbide core mass (g)	Conver sion %	C (ppm)
UC	81.54	900	10	6	22	13.39	15.63	21.78	73%	2010
UC	81.85	600	10	6	17	12.86	14.46	19.68	76%	4690

Results: 1) Complete conversion to an oxide can not be achieved

Small scale oxidation experiments on UC pellets and fragments in furnaces



Temperature influence (T≥ 600°C) on oxidation: oxide sintering


10 Pa O₂ T = 600°C \rightarrow oxidation completed in 20 minutes

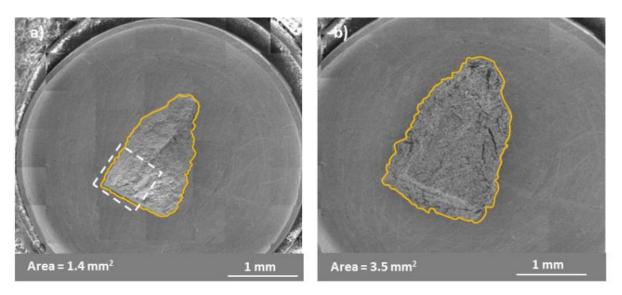
Oxidation occurs all over the surface as soon as sample is in contact with oxygen

10 Pa O₂ T = 800 °C \rightarrow oxidation not yet completed in 3 hours

Oxidation occurs at the edges first whilst the top surface appeared compact due to partial sintering of the oxide. Stress build-up promotes cracks which generate the next surfaces to oxidise.

Results:

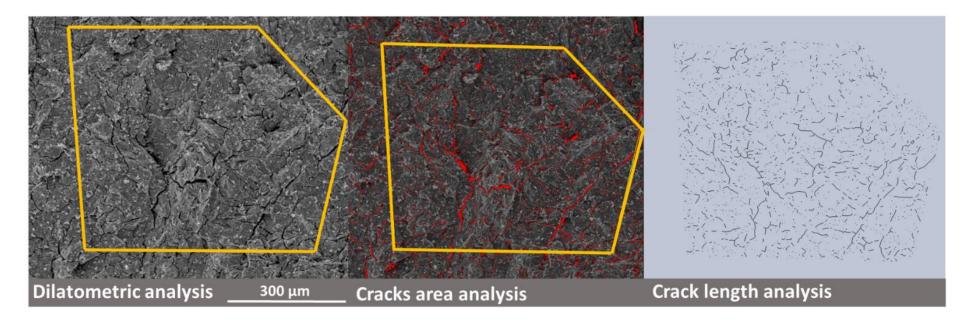
Imperial College London



4) UC oxidation and ignition mechanism

UC samples manufactured from CEA, Cadarache, France were transported to ICSM, Marcoule, France for HT-ESEM experiments.

Transformation from UC to UO_2 and UO_2 to U_3O_8 was investigated in atmosphere of 10-100 Pa O_2 from 450-575°C


$> UC \rightarrow UO_2$

10 Pa O₂ 450 °C

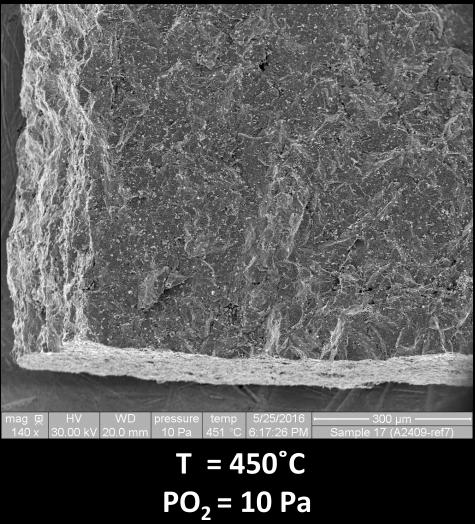
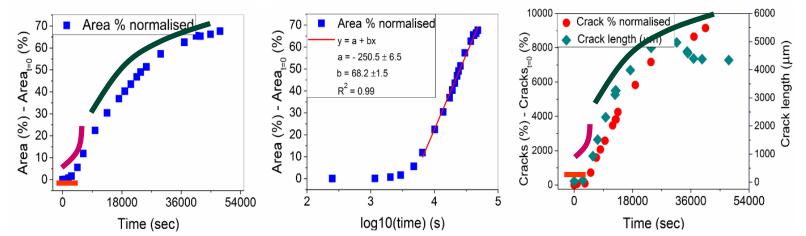
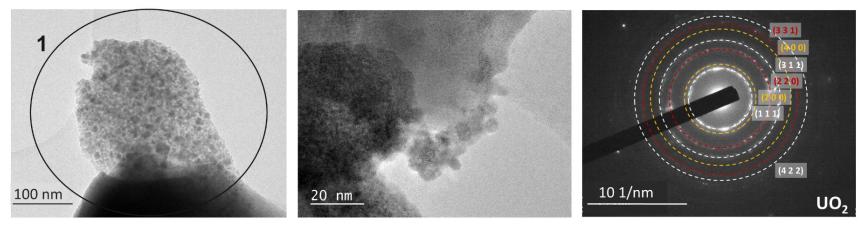

Imperial College London Image analysis techniques: sample area expansion and crack propagation

Image processing via Fiji ImageJ is used to get information on sample expansion, crack propagation, crack length and network during oxidation.


* Gasparrini, C et al. "Oxidation of UC: an *in situ* high temperature environmental scanning electron microscopy study". J Nucl Mat, 494, 127-137, (2017)

In situ UC oxidation in a HT-ESEM

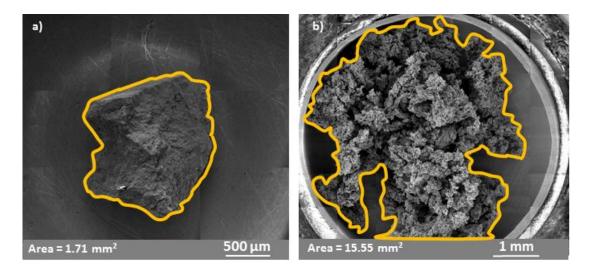


Time = 6 h (shown in 35 seconds)

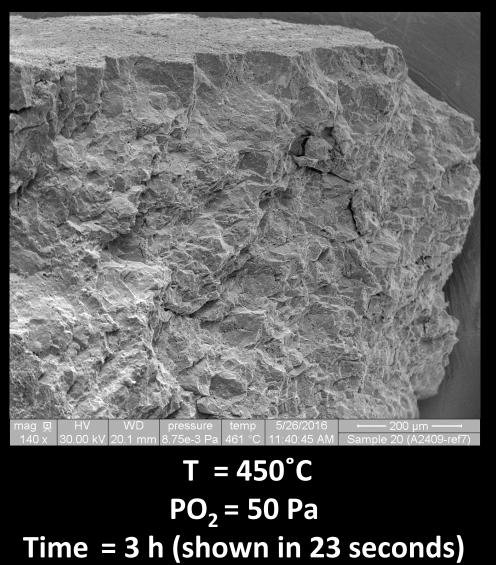
UC transformation to UO₂ (450 °C 10 Pa O₂)

Sample area expansion and crack propagation follow a similar trend comprised of: induction period, exponential area expansion and crack propagation followed by and logarithmic trend.

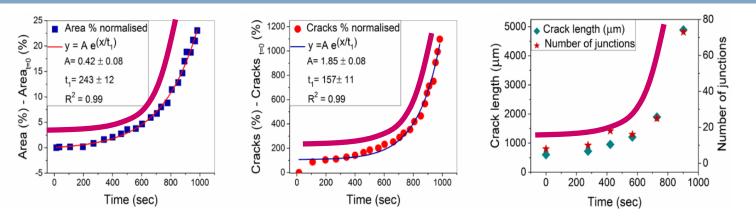
HRTEM analysis shows the oxide to be polycrystalline UO₂


Results:

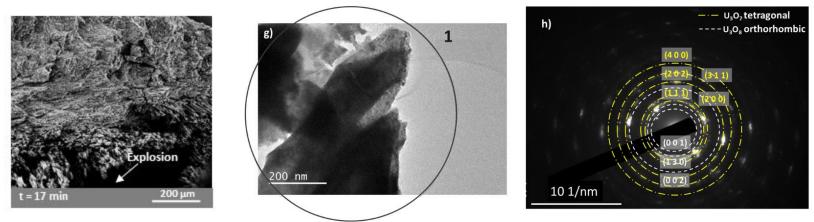
Imperial College London


4) UC oxidation and ignition mechanism

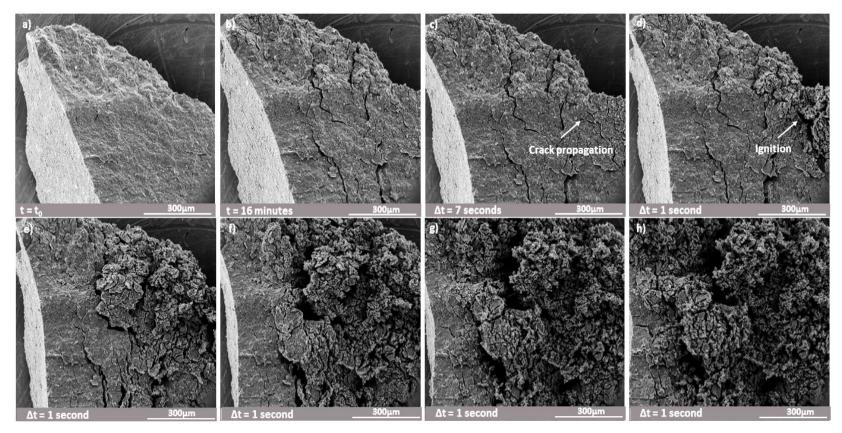
\succ UC \rightarrow U₃O₈



50 Pa O₂ 450 °C

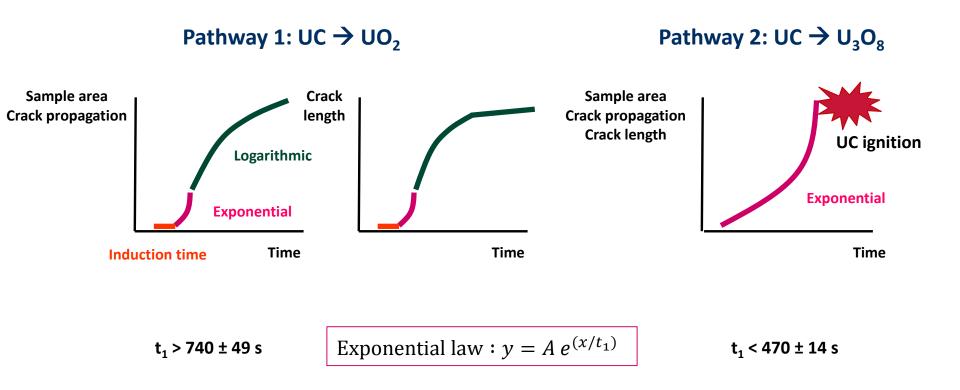

UC oxidation in a HT-ESEM

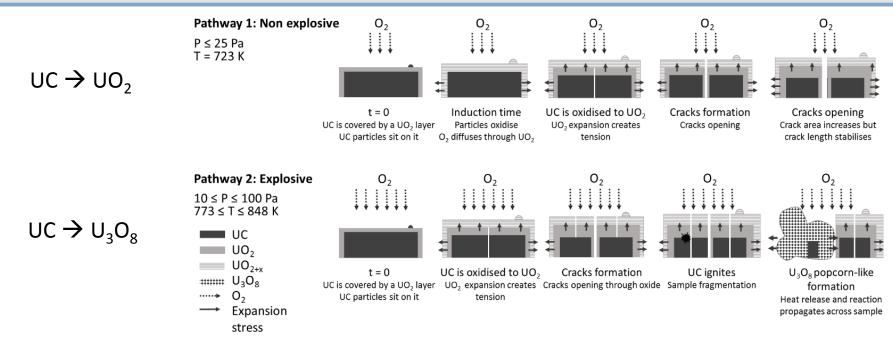
UC transformation to U_3O_8 (450 °C 50 Pa O_2)


Sample area expansion, crack propagation crack length and number of junctions all follow an exponential trend. UC ignition is triggered by the fragmentation of the sample.

HRTEM analysis shows the oxide to be orthorhombic U_3O_8 and tetragonal U_3O_7 . U_3O_8 transformation is triggered by ignition of UC which propagates as a SHS reaction.

Self-propagating high-temperature synthesis (SHS)


The slow motion popcorn-like explosion recorded on a sample oxidised at 575 $^{\circ}$ C in 10 Pa O₂ shows the propagation front of the SHS reaction.


The SHS reaction in this sample propagates with a speed between 150 – 500 \pm 50 $\mu m/s$ across the sample.

UC oxidation pathways

The morphological changes during transition from UC to UO_2 and from UC to U_3O_8 have been monitored *in situ*. These are characterised by two pathways: a non explosive (pathway 1) and an explosive one (pathway 2).

Conclusions

- In situ HT-ESEM study on UC oxidation reveals the influence of T and PO₂ on the transformation between UC to UO₂ and U₃O₈ below 600 °C
- Above 600 °C the oxide sinters and limits the oxidation acting as a barrier
- A method for the correlation of crack propagation and sample expansion has been developed via Fiji ImageJ. Crack network is responsible for UC ignition. UC oxidises to UO₂ when growth factor $t_1 \ge 740 \pm 49$ s, or to U₃O₈ when $t_1 \le 470 \pm 14$ s.
- UC ignition to U₃O₈ triggers a SHS reaction which propagates throughout the sample.

Thanks for your attention!

And special thanks to all the people at NNL, ICSM, CEA and Imperial that made this project possible !

Particle Technology & Fluidization Life Cycle Assessment Research Group

A life cycle approach to Used Nuclear Fuels management

<u>Mr. Andrea Paulillo</u> & Prof. Paola Lettieri Department of Chemical Engineering, University College London

Prof. Roland Clift Centre for Environmental Strategy, The University of Surrey

Dr. Jonathan M. Dodds & Dr. Stephen J. Palethorpe *National Nuclear Laboratory*

Mr. Andrew Milliken Sellafield Ltd.

Presentation outline

- Introduction: Life Cycle Assessment What? Why? How?
- Objectives
- A novel methodology for assessing radionuclides impact in LCA
- LCA case studies
 - Assessing the impact of the current approach in the UK
 - Looking at future options
- Conclusions and future work

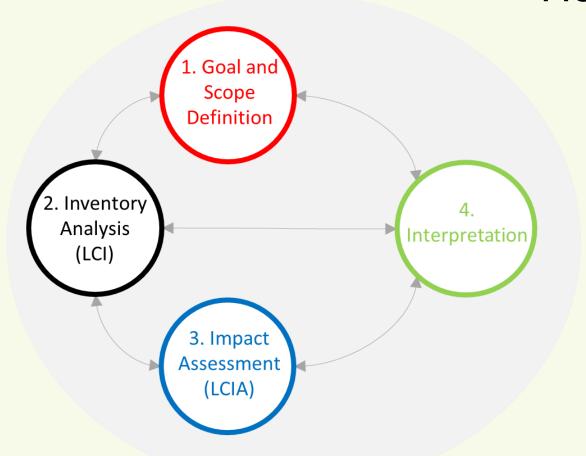
Life Cycle Assessment What is it?

LCA is a technique for assessing potential impacts of industrial systems.

Life Cycle Assessment Why? Water Effluents **Extraction Raw Materials Air Emissions** Materials Processing Solid Wastes **Other Releases** Product Manufacture **Usable Products** Transport and Distribution Product Use and Service **Reuse - Recycling**

Final Disposal

Materials


Transport

Life Cycle

approach

Energy

Life Cycle Assessment How?

Life Cycle Assessment framework

Impact categories	Units			
Acidification	Mol H ⁺⁻ eq.			
Climate Change	kg CO2-eq.			
Eutrophication	Kg/mol N-eq.			
Ozone Depletion	kg CFC-11-eq.			
Human Toxicity	CTUh CTUe			
Ecotoxicity				
Etc				

Pollutant (kg emitted)	CC Impact factor (kg CO ₂ equiv.)
CO ₂	1
CH ₄	24
CFC	400

The issue of applying LCA to the nuclear industry

> Very few and not comprehensive LCA studies.

Reason: lack of a standard, comprehensive methodology for assessing the impacts of radioactive emissions and solid nuclear waste.

Objectives

- 1. Develop a LCA methodology for assessing the human impacts of radioactive emissions and solid nuclear waste disposed in a final repository.
- 2. Assess the impacts of current and future approaches for managing Used Nuclear Fuels (UNFs) and nuclear wastes in the UK.

Use:

□ Support decision-making process within the nuclear industry;

□ Improve **public knowledge** of the nuclear energy.

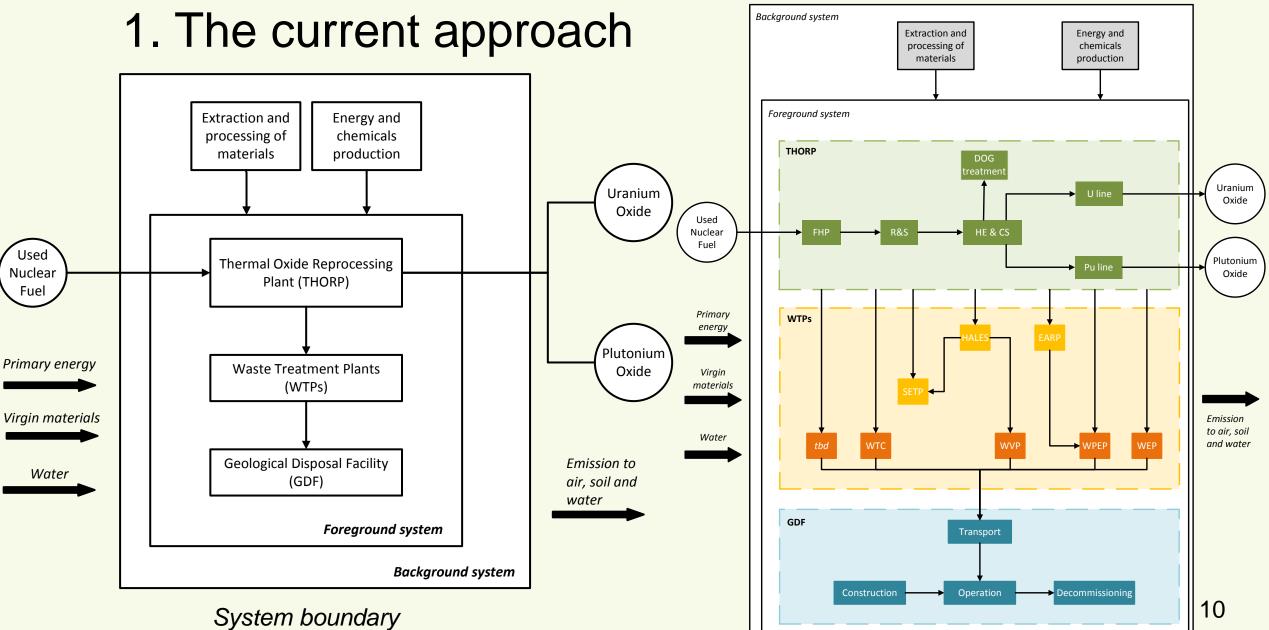
USErad: a multimedia environmental model

Impact categories:

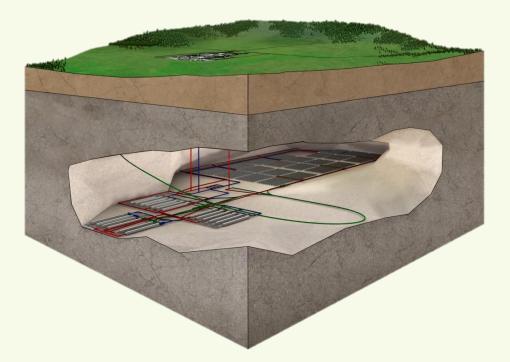
- <u>Ionising Radiations IR:</u> Impacts of direct gaseous and liquid discharges of radionuclides.
- <u>Ionising Radiations (waste) IRw:</u> Impacts arising from solid waste disposed in a final repository.

LCA case studies

1. Retrospective attributional LCA :


Assessing the impacts of the current approach for managing Used Nuclear Fuels in the UK

2. (Short-term) Prospective LCA:


Reprocessing vs Direct Disposal of Used Nuclear Fuels: Assessing the impacts of future scenarios for the back-end of the UK nuclear fuel cycle

Impact categories

Selected impact categories	Metrics		
Climate Change	[kg CO2-eq.]		
Ecotoxicity (freshwater)	[CTUe]		
Eutrophication (freshwater)	[kg P eq.]		
Human Toxicity (cancer)	[CTUh]		
Human Toxicity (non- cancer)	[CTUh]		
Ionising Radiations	[Bq U235 air-eq.]		
Ionising Radiations (waste)	[Bq U238 I/LLW-eq.]		
Resource depletion	[kg Sb-eq.]		

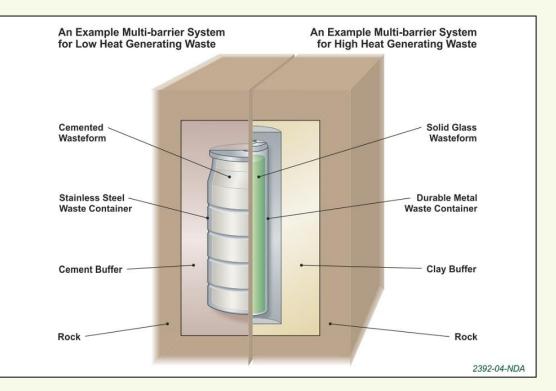
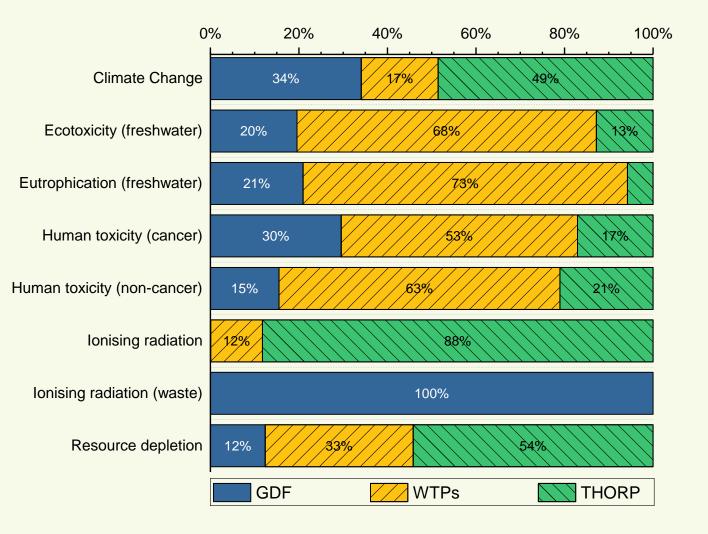

The Geological Disposal Facility (GDF)

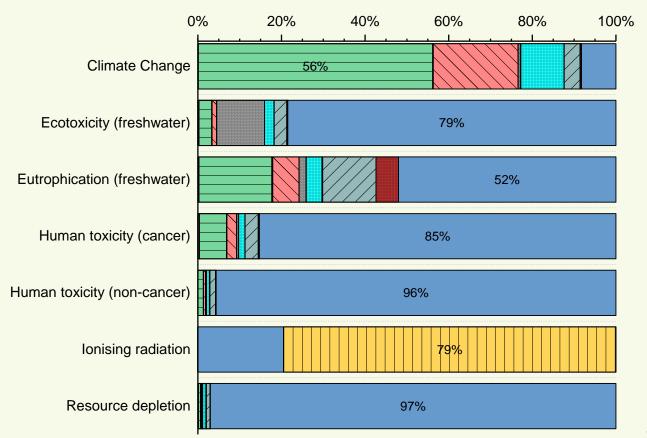
Illustration of the Geological Disposal Facility concept

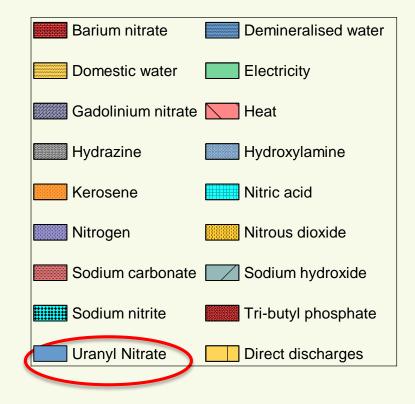
(Ref: RWM (2010) Generic Post-closure Safety Assessment)


The multi barrier system concept for waste disposal

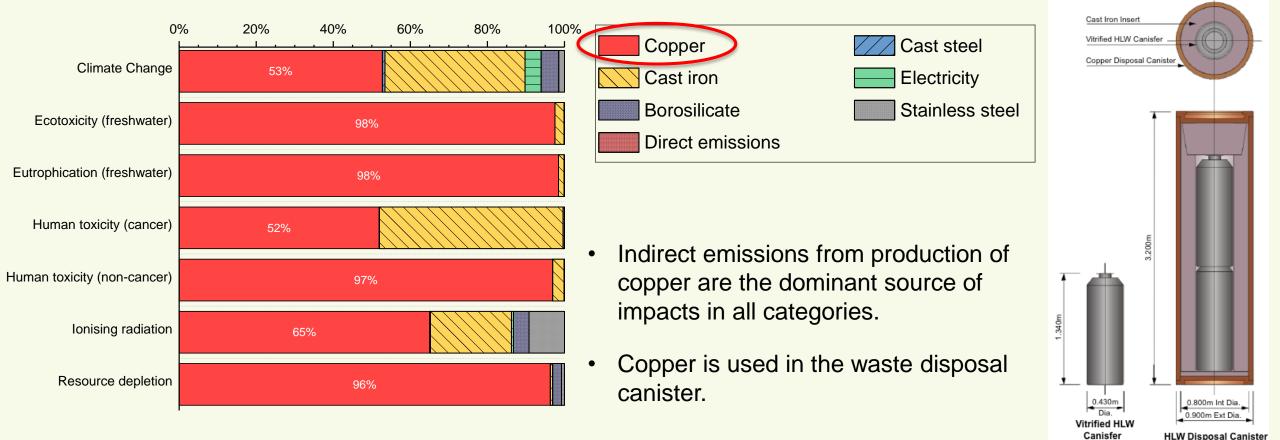
(Ref: RWM (2010) Generic Post-closure Safety Assessment)

LCIA results: high level hot-spot analysis




GDF: Geological Disposal Facility			
WTPs: Waste Treatment Plants			
THORP: Thermal Oxide Reprocessing Plant			

- THORP is largest contributor to CC, IR and RDm, while WTP to ECf, Ef, HT-c and nc.
- GDF impacts are appreciable for CC.
- IRw category (by definition) is dominated by GDF


LCIA results: THORP hot-spot analysis

 Indirect emissions from production of uranyl nitrate are the dominant source of impacts in all but CC and IR (climate change) and IR categories.

LCIA results: Waste Vitrification Plant hot-spot analysis

(Pöyry Energy Ltd, 2010. Development of the Derived Inventory of HLW and Spent Fuels Based on the 2007 UK Radioactive Waste Inventory)

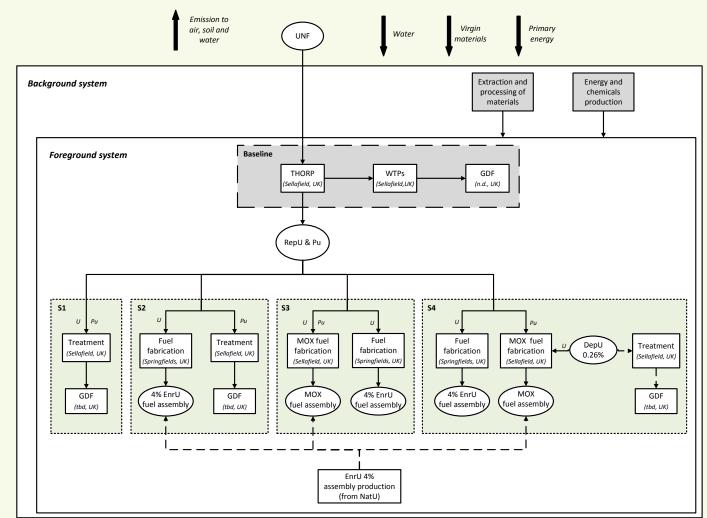
(2 x VHLW Canisters)

LCA case studies

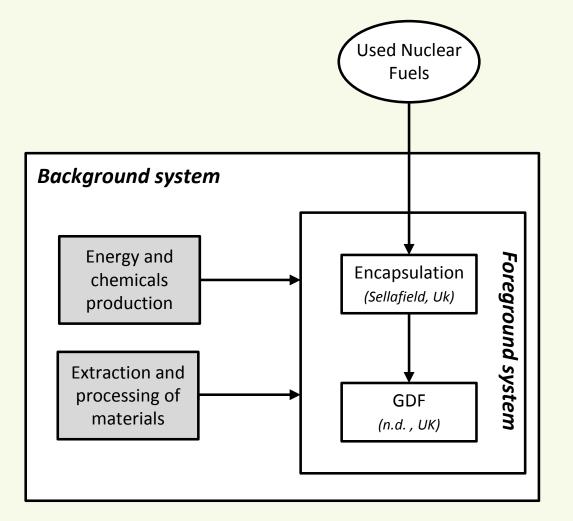
1. Retrospective attributional LCA :

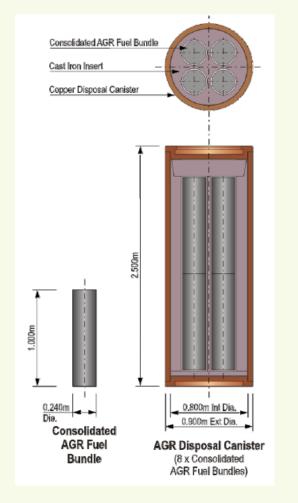
Assessing the impacts of the current approach for managing Used Nuclear Fuels in the UK

2. (Short-term) Prospective LCA:


Reprocessing vs Direct Disposal of Used Nuclear Fuels: Assessing the impacts of future scenarios for the back-end of the UK nuclear fuel cycle

for the UK: Reprocessing UNF 2. Future options Baseline Foreground system THORP WTPs GDF (Sellafield,UK) (Sellafield, UK) (n.d., UK) RepU & Pu **S1 S4** S2 **S3** U Ри U Рu U Ри U Рu MOX fuel Fuel Fuel MOX fuel Fuel Treatment Treatment Dep.U Treatment fabrication fabrication fabrication fabrication fabrication (Sellafield, UK) (Sellafield, UK) 0.26% (Sellafield, UK) (Springfields, UK) (Sellafield, UK) (Springfields, UK) (Springfields, UK) (Sellafield, UK) Enr. U 4% MOX Enr.U 4% Enr.U 4% MOX GDF GDF GDF assembly assembly assembly assembly assembly (tbd, UK) (tbd, UK) (tbd, UK) Enr.U 4% assembly production (from NatU)


2. Future options for the UK: Reprocessing


- **S1**: RepU & Pu are declared as waste and disposed in a GDF.
- **S2**: Pu is disposed, and U is recycled (to produce enriched uranium).
- **S3:** U & Pu are both recycled (to produced MOX and enriched uranium).
- **S4:** Also DepU is recycled along with U & Pu.

System boundary

2. Future options for the UK: Direct Disposal

System boundary

Disposal canister for AGR fuel

LCIA results – Options comparison

Weighted impacts difference between reprocessing and direct disposal


	Reprocessing				Direct
	S1	S2	S 3	S4	disposal
Climate Change	116%	-235%	-328%	-262%	0%
Ecotoxicity (freshwater)	-19%	-69%	-96%	-88%	0%
Eutrophication (freshwater)	-18%	-109%	-144%	-129%	0%
Human Toxicity (cancer)	-18%	-77%	-105%	-92%	0%
Human Toxicity (cancer)	-19%	-126%	-163%	-146%	0%
Ionising Radiations	56008%	54624%	54214%	54576%	0%
Ionising Radiations (waste)	-10%	-48%	-56%	-49%	0%
Resource depletion	57%	-2298%	-2714%	-2343%	0%

• S1 and direct disposal are the worst performing options.

- Direct disposal has the lowest IR score.
- Recycling of RepU, or RepU and Pu brings significant benefits.
- S3 is the most environmentally sustainable option, followed by S4 and S2.

LCIA results: Reprocessing scenarios hot-spot analysis

Hot-spot analysis of reprocessing scenarios. Impacts are relative to the baseline.

In S2, S3 and S4 the environmental benefits of avoiding production of enriched NatU offset the additional impacts of RepU enrichment and MOX production.

Conclusions

- A novel methodology for assessing human impacts of radioactive discharges and solid waste has been developed and demonstrated.
- > LCA on current practice for management of Used Nuclear Fuels:
 - THORP and WVP are the most impactful units, with GDF having minor impacts.
 - THORP impacts are largely attributable to indirect emissions from production of uranyl nitrate used to separate Pu from U.
 - WVP impacts are related with indirect emissions from production of copper used in disposal canisters.
- > LCA on future options for the back-end of the UK nuclear fuel cycle:
 - Reprocessing Scenario 3 is overall the best performing option.
 - Reprocessing with disposal of Pu and RepU is the worst performing option followed by direct disposal.
 - Recycling of RepU, or both RepU and Pu is of paramount importance, as it avoid uranium mining and milling

 a very high-impact process!

Future work

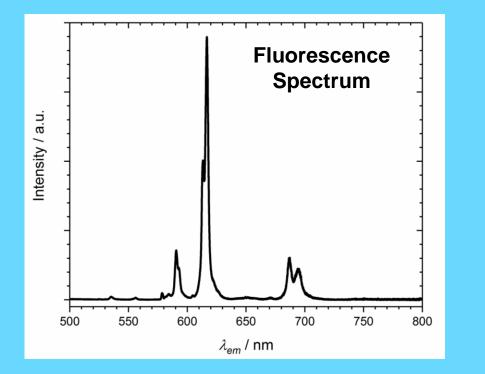
- Comparative LCA of electricity generation from nuclear source in:
 - 1. Uranium-based fuel cycle
 - 2. Thorium-based fuel cycle
- Thesis submission!

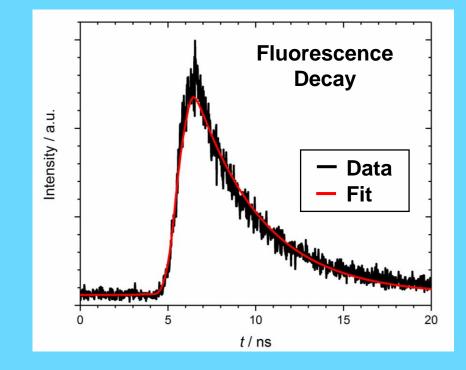
Acknowledgments

Aqueous Speciation & Amorphous Phase Characterisation by TRLFS and Raman Spectroscopy

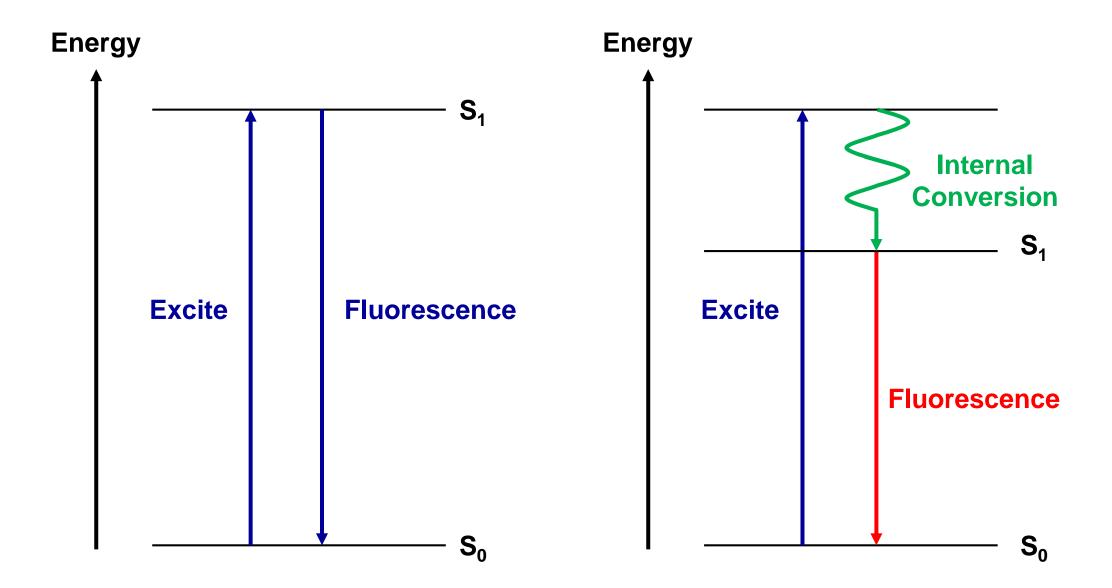
Victoria L. Frankland, Rachida Bance-Soualhi and David Read

Introduction

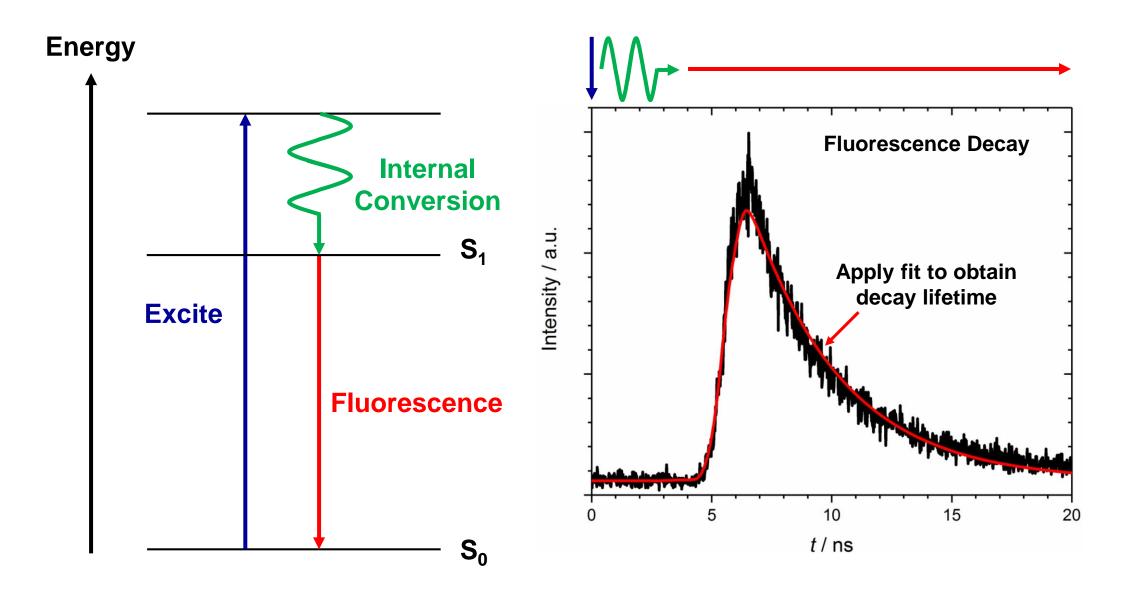

- Aim: Create a spectral database for 'difficult to characterise' samples from operational & legacy nuclear sites
- Sample phases:
 - High quality crystalline mineral phases as reference materials
 - Aqueous & non-aqueous solutions
 - Amorphous & ultra-thin surface alteration products
- Limitations with conventional techniques: XRD - requires good crystallinity IR spectroscopy - spectra masked by water features
- Options:
 - Time-Resolved Laser Fluorescence Spectroscopy (TRLFS)
 - Raman Spectroscopy
 - NMR etc.

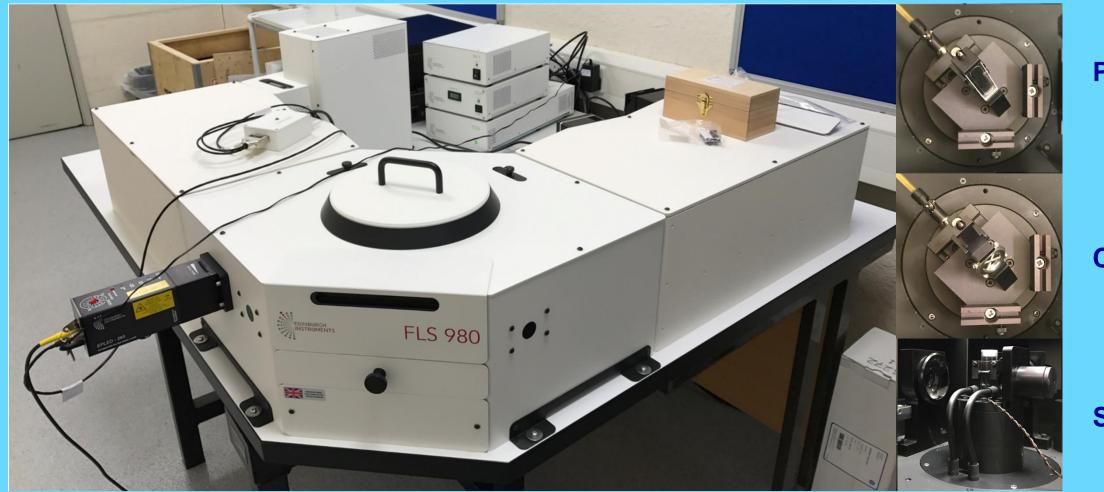


Time-Resolved Laser Fluorescence Spectroscopy (TRLFS)

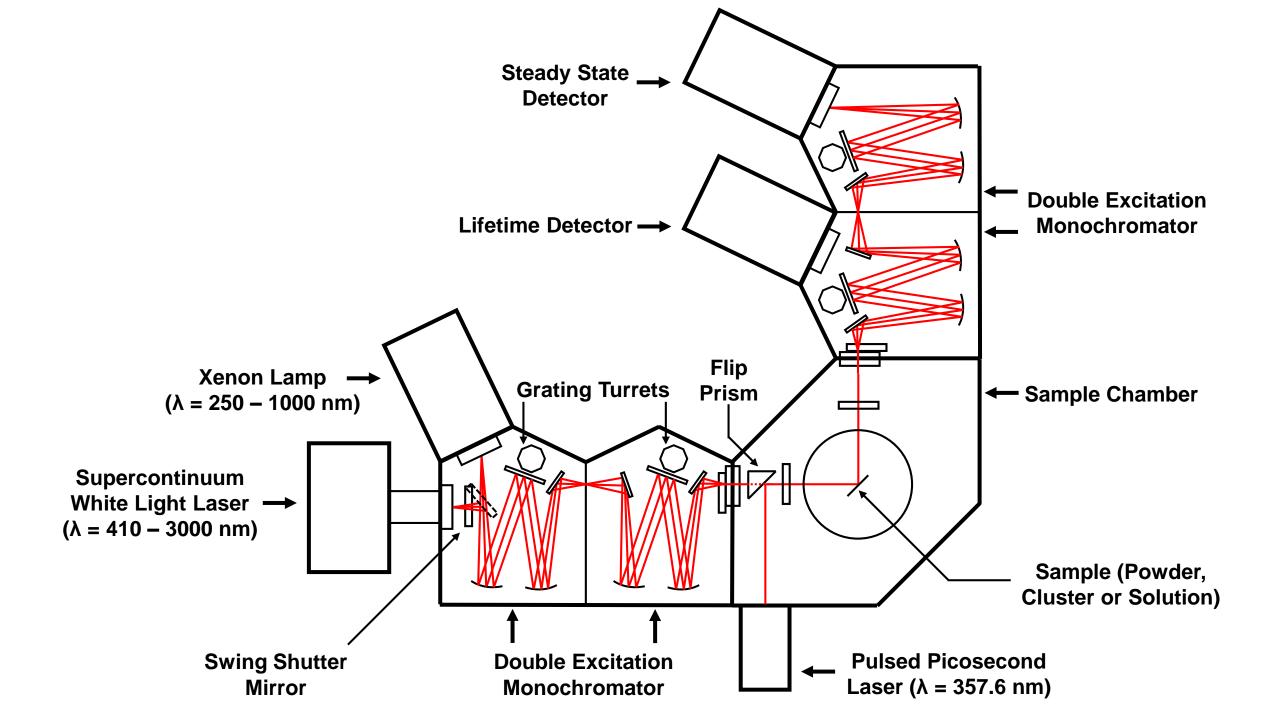

Fluorescence Spectra (non-time-resolved)

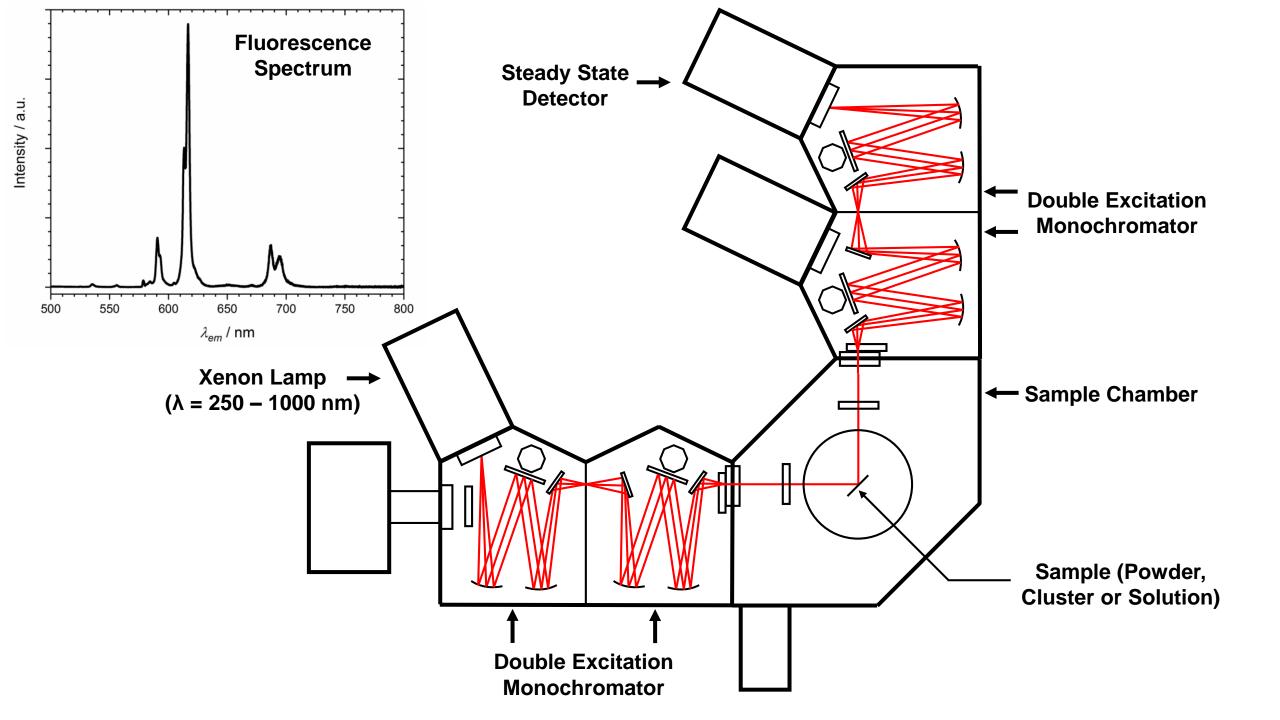
Fluorescence Decay (time-resolved)

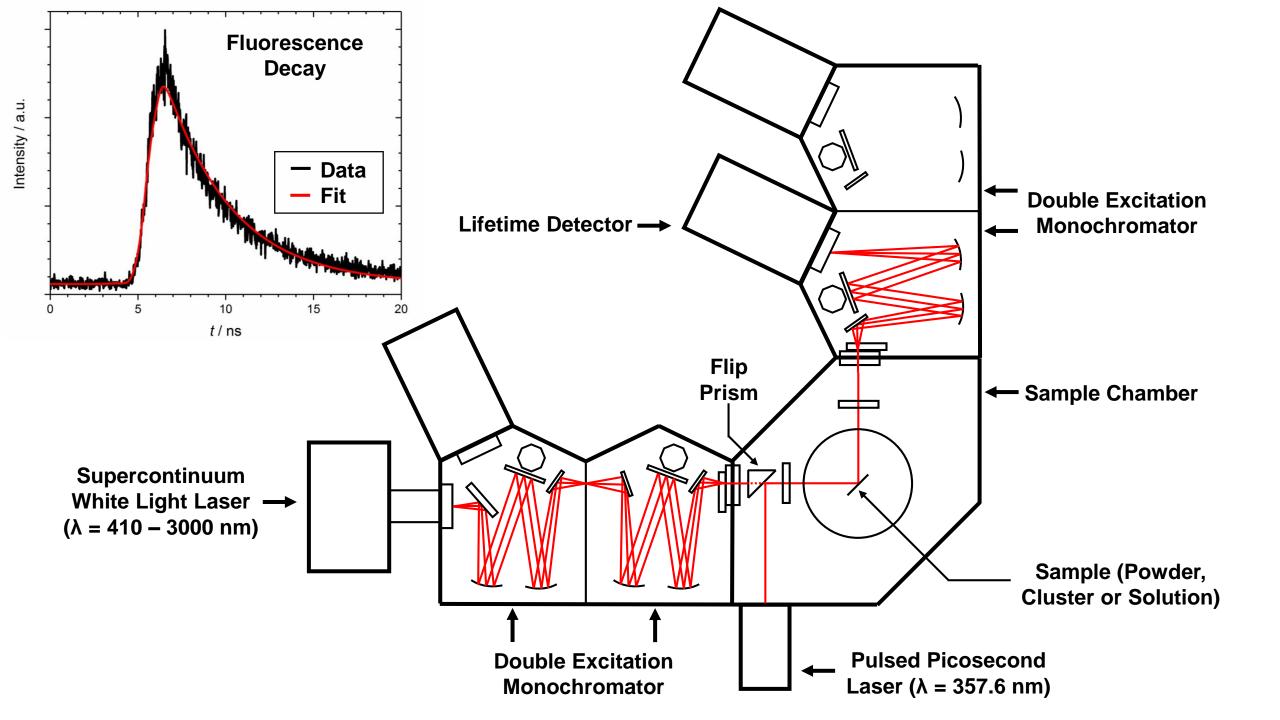



Fluorescence

Fluorescence Decay


Time Resolved Laser Fluorescence Spectroscopy (TRLFS)




Powders

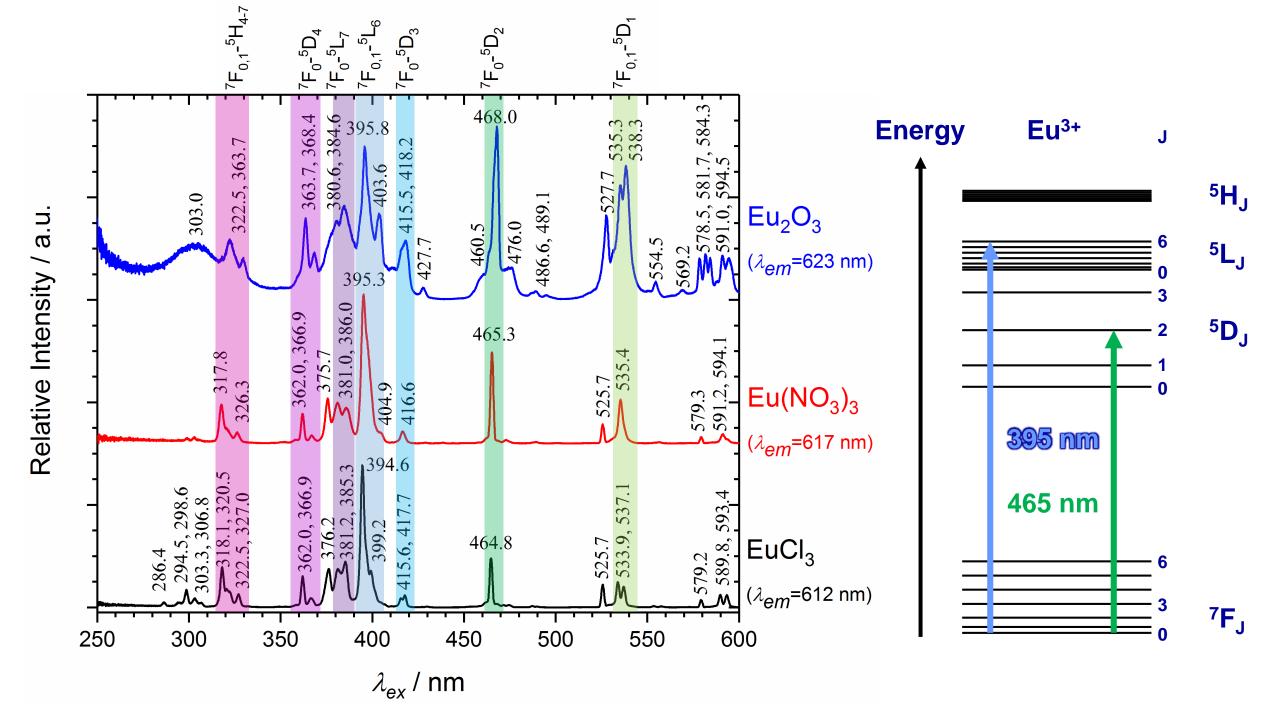
Clusters

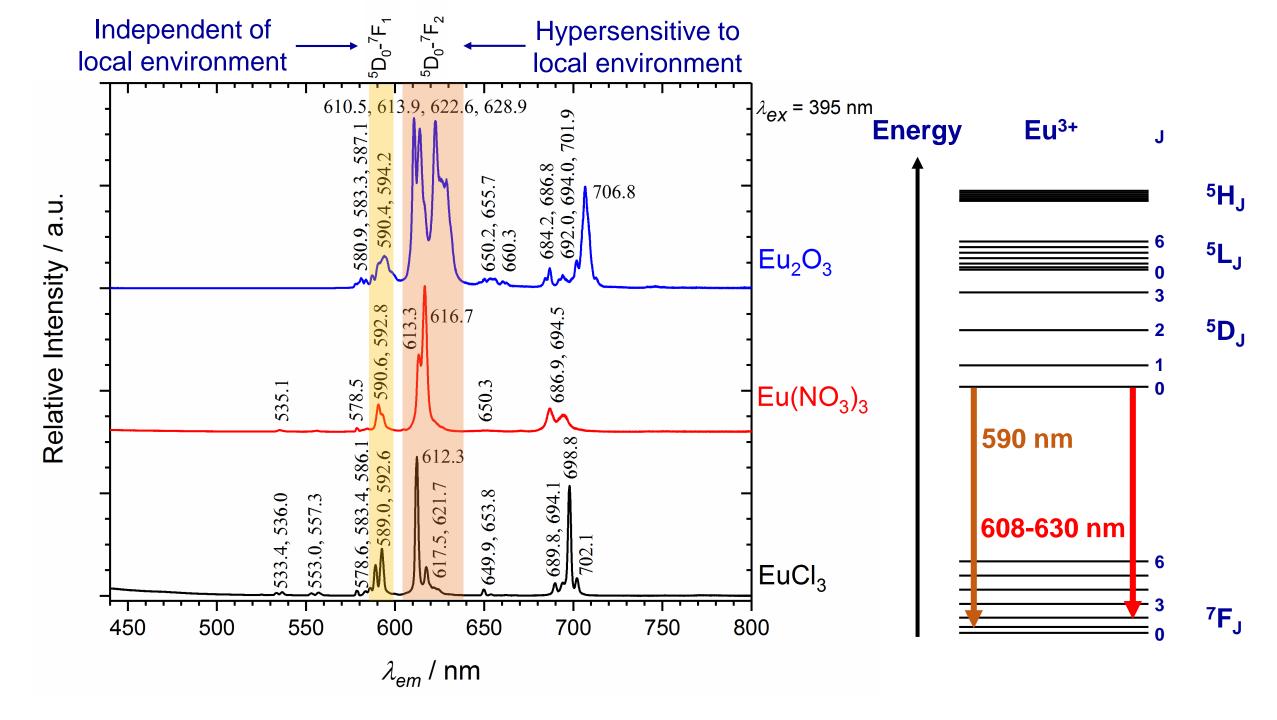
Solutions

Raman Spectroscopy

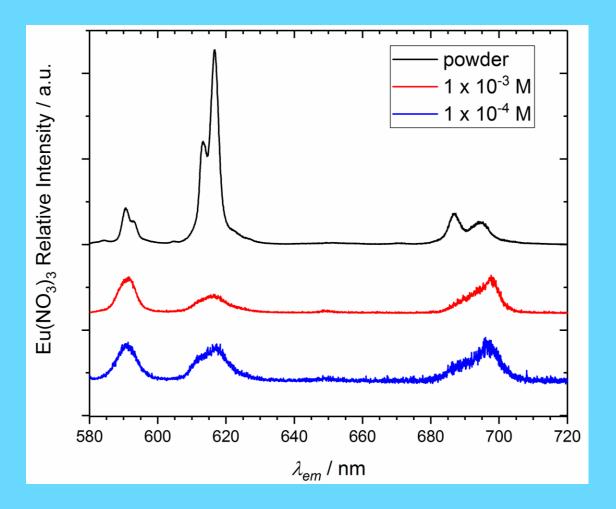
- Observe vibrational, rotational and other low frequency modes
- Common features in Raman spectroscopy:
 - < 200 cm⁻¹ = lattice vibrations
 - 200 1200 cm⁻¹ = most transitions
 - 1630-1680 cm⁻¹ = water bending mode, $\delta(H_2O)^1$
 - $3000 3800 \text{ cm}^{-1} = \text{OH vibrations (from water)}^2$
- Spectra scan at one point
- Raman mapping across surface

[1] A.F. Bell, J. Am. Chem. Soc., 1997, 119, 6006
[2] S.M. Pershin, Optics Spectrosc., 2005, 98, 543


Raman Spectroscopy


- 5 Lasers:
 - 244 nm (UV)
 - 457 nm (blue)
 - 532 nm (green)
 - 633 nm (red)
 - 785 nm (IR)
- Powders and Clusters
- Alternative stage for solutions

Preliminary Characterisation Results


TRLFS: Eu_2O_3 , $Eu(NO_3)_3$ and $EuCl_3$

Hypersensitive ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ Peak

- Changes in the position and intensity of ${}^5\text{D}_0 \to {}^7\text{F}_2$ peak
- * ${}^5D_0 \rightarrow {}^7F_2 : {}^5D_0 \rightarrow {}^7F_1$ gives indication of ligand strength
- Fluorescence decay lifetime, τ, and number of H₂O molecules in 1st sphere, n[H₂O],¹⁻²

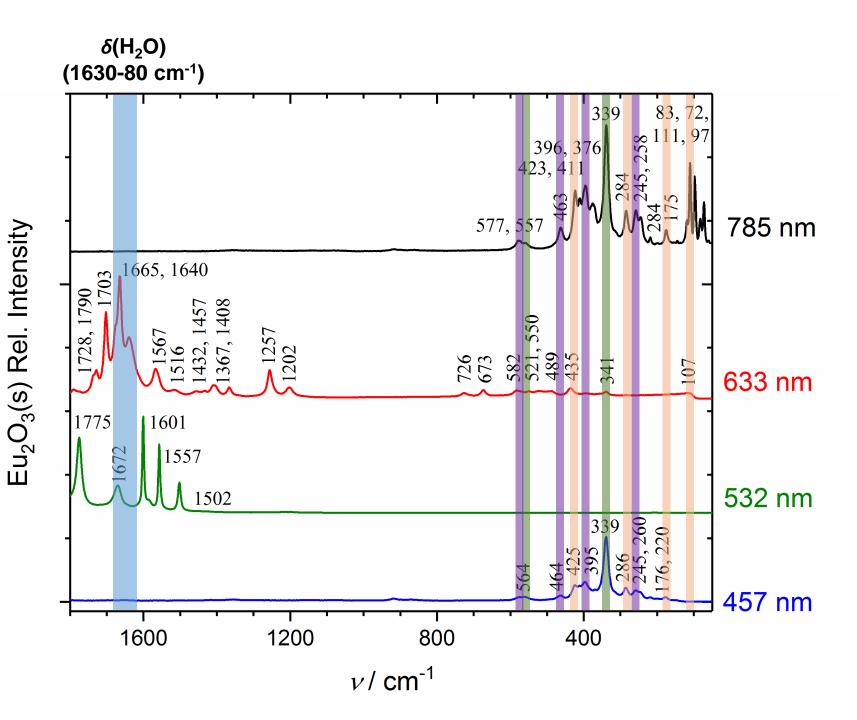
$$n[H_2 O] = \frac{1.07 \times 10^{-3}}{\tau [Eu^{3+}]} - 0.62$$

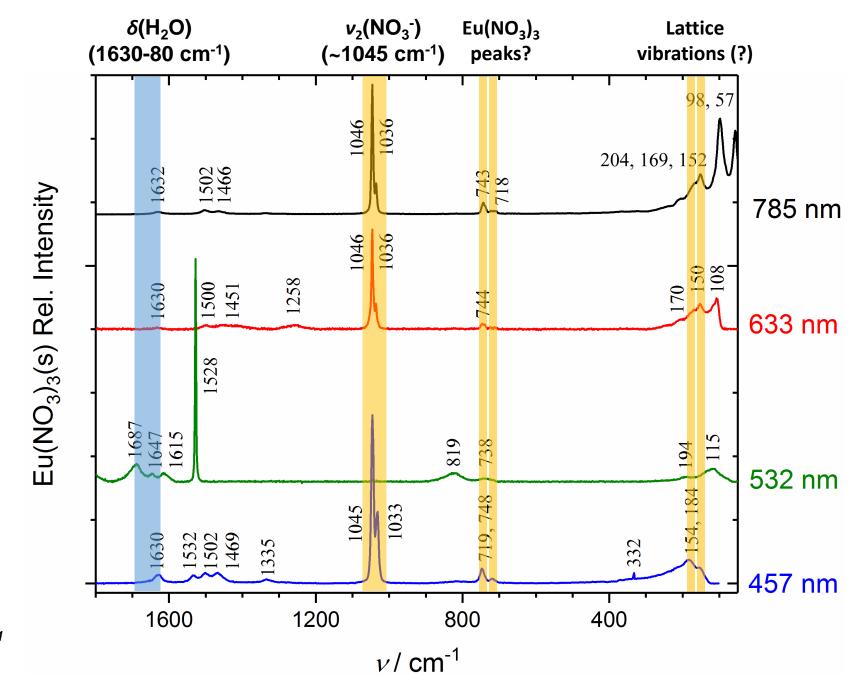
[1] P.P. Barthelemy and G.R. Choppin, *Inorg. Chem.*, 1989, 28, 3354
[2] T.W. Line Line Line 1996, 72, 64

[2] T. Kimura, et al., Radiochim. Acta, 1996, 72, 61

Preliminary Characterisation Results

Raman: Eu_2O_3 , $Eu(NO_3)_3$ and $EuCl_3$

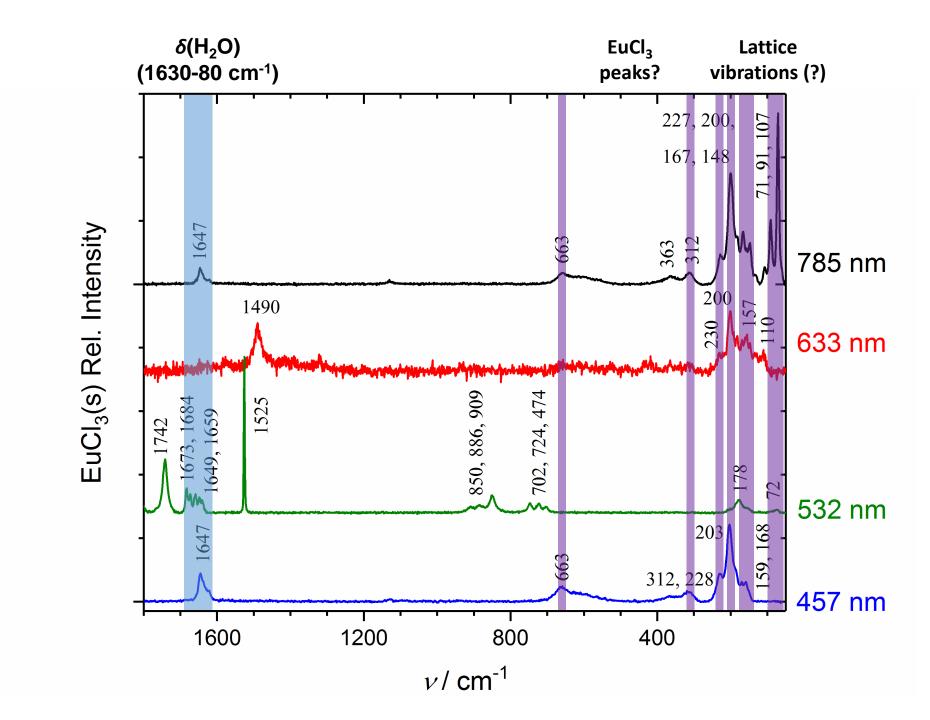

Eu₂O₃ Peaks


Cubic only¹⁻²: 337 and 557 cm⁻¹

Monoclinic only³: **258**, 395, 465 and 580 cm⁻¹

Both phases¹⁻⁴: **110**, 175, 285 and 424 cm⁻¹

[1] L.A. Tucker, et al., Appl. Spectrosc.,
1984, 38, 857
[2] Z.H. Yu, et al., J. Alloy. Compd.,
2017, 701, 542
[3] J. Gouteron, et al., J. Solid State
Chem., 1981, 38, 288
[4] K.W. Chae, et al., J. Lumin., 2012,
132, 2293



Eu(NO₃)₃ Peaks

< 200 cm⁻¹ = lattice vibrations

~ 1045 cm⁻¹ =
$$v_2(NO_3^{-1})^{-1}$$

[1] V. Tsaryuk, *et al., Spectrochim. Acta A*, 2005, 61, 185

< 200 cm⁻¹ = lattice vibrations

EuCl₃ Peaks

Characterisation Database

For this project and literature results:

- Fluorescence peak positions
- Fluorescence decay lifetimes
- Raman features (at which wavelengths)
- Resource for project partners and the wider community

🖾 🗄 🗇 - 🗧			my U fluorescence database.xlsx - Excel					? 🖬 -	- 🗆	×	
	E LAYOUT	FORMULAS DA	A REVIEW	VIEW					Frankland V Dr (Chemis	stry) 🔹	0
Calibri	- 1		»·- 🗄	Wrap Text General		-	l 📰 📰 🖫		∑ AutoSum · A		
							ert Delete Format	Fill ▼ Sort & Find &	6		
Format Painter	*	🏠 • 🔺 • 🚍 🚍 🤻		Merge & Center 👻 🍄 🤤	% * .00 .		tting * Table * Styles *				
Clipboard 🕞	Font	Far	Alignment	t G N	lumber	Fa	Styles	Cells	Editing		~
$D35 \rightarrow : \times \checkmark f$	γ										¥
			_	1	F						
A	В	С	_	D E		G	Н		Ι	J	-
1 U - species U sta		2220	fluorescence at RT	peaks / nm	lifetime at RT/ ns	lifetime error / ns	000000	notes			
17 AI (UO2)3 (PO4)2 OOH . 7(H2O)	U state	upalite	dLNI	peaks / IIII		enor / lis	webmineral.com	notes			-
17 AT (002)3 (P04)2 0011.7(1120)		upante					webhinieral.com				-
18 AI (UO2)3 (PO4)2 (OH)3.5(H2O)		mundite					webmineral.com				
				489, 506, 527, 550, 576,			Faulques, RSC Advances,				
19 Ba (UO2)2 (PO4)2 . 10(H2O)	6	uranocircite	Y	604,			2015, 5, 71219				
				511.7, 529.7, 550.4, 576.4,			Massuyeau, RSC				
20 Ba (UO2)2 (PO4)2 . 10(H2O)	6	uranocircite	Υ	602.6	1500	60	Advances, 2017, 7, 919				
				488.1, 503.5, 523.9, 547.0,			Geipel, Radiochimica				
21 Ba (UO2)2 (PO4)2 . 12(H2O)	6	uranocircite	Y	572.1, 599.7	30600	950	Acta, 2000, 88, 757				
				488.9, 502.5, 523.7, 547.4,			Geipel, Radiochimica				
22 Ba(UO2)2 (PO4)2 . 8(H2O)	6	metauranocircite	Y	573.4, 602.6	3000	270	Acta, 2000, 88, 757				$-\square$
				488.6, 504.0, 524.2, 548.0,			Geipel, Radiochimica				
23 Ca (UO2)2 (PO4)2.10(H2O)	6	autunite	Y	573.9, 602.4	5150	275	Acta, 2000, 88, 757				
							Mehta, Chem Geo, 2014,				
24 Ca (UO2) (PO4)2		autunite					364, 66				_
				491.3, 501.8, 522.9, 546.9,			Geipel, Radiochimica		Sci of the Total Environ,		
25 Ca (UO2)2 (PO4)2 . 8(H2O)	6	metaautunite	Y	572.2, 591.7	740	100	Acta, 2000, 88, 757	2006, 366, 905			_
25 0. (1102)2 (204)2 8(1120)				487, 504, 526, 549, 576,			Faulques, RSC Advances,				
26 Cu (UO2)2 (PO4)2 . 8(H2O)	0	metatorbernite	Y	604,			2015, 5, 71219				
27 Cu (UO2)2 (PO4)2 . 8(H2O)	<i>_</i>	metatorbernite	Y	506.5, 527.3, 550.0, 575.1, 602.6,	10100	100	Massuyeau, RSC Advances, 2017, 7, 919				
27 50 (002)2 (F04)2.0(H20)	0	metatorbeffilte	r N (N at cryo	002.0,	10100	190	deNeufville, Appl Opt,				
28 Cu (UO2)2 (PO4)2 . 8(H2O)	6	metatorbernite	T)				1981, 20, 1297	refin Wang I Phy	/s Chem A, 2008, 112, 10502		
	J		N (N at cryo				deNeufville, Appl Opt,	· · · · · · · · · · · · · · · · · ·	1	-	
29 Cu (UO2)2 (PO4)2 . 10(H2O)	6	torbernite	T)				1981, 20, 1297	ref in Wang, J Phy	/s Chem A, 2008, 112, 10502		
- (,- (, -,, -, -, -, -, -, -, -, -, -			,	489.0, 501.1, 522.1, 545.7,			Geipel, Radiochimica				
30 Mg (UO2)2 (PO4)2 . 10(H2O)	6	saleeite	Y	570.9, 600.9	2250	200	Acta, 2000, 88, 757				
				482, 498, 518, 544, 570,			Faulques, RSC Advances,				
31 Mg (UO2)2 (PO4)2 . 10(H2O)	6	saleeite	Y	595,			2015, 5, 71219				
· · · · · ·				502.6, 522.7, 545.3, 569.9,			Massuyeau, RSC				
32 Mg (UO2)2 (PO4)2 . 10(H2O)	6	saleeite	Υ	597.3,	31900	1400	Advances, 2017, 7, 919				
33											
34											
AI2 (UO2)3 (PO4)2 (OH)6 .				496.9, 500.6, 520.3, 542.9,			Geipel, Radiochimica				
35 10(H2O)	6	phuralumite	Y	568.7, 599.9	31800	1300	Acta, 2000, 88, 757				_
				482, 498, 520, 544, 568,			Faulques, RSC Advances,				Ŧ
26 C2 Cu (UO2) (DO4)2 4(H2O)	nitrat	es Halogens car	bonate pho	sonates arsenates su	ulfates se	lenates	molybdates vanadates	🕂 : 🖪		- -	L L L
united sincates	muau		pilo	arsenates St	mates st	incitates	monybuates variatidates	···· 🕁 : 🗖	1		r

Ⅲ 🗉 🛄 **-** ——— **+** 100%

Future Work

- TRLFS and Raman spectroscopy characterisation of uranium-bearing minerals
 - Samples from: British Geological Survey Reference Collection
 Natural History Museum collection tbc
- XRD characterisation to confirm phase pure
- TRLFS and Raman spectroscopy characterisation of uranium-bearing solutions

Acknowledgements

Prof David Read, Dr Carol Crean, Dr Rachida Bance-Soualhi and Emily Rastrick

Thank you all for listening