Simulation of dense suspension in pipe flows with homogeneous stationary sediment bed

Derrick Njobuenwu* and Michael Fairweather

School of Chemical and Process Engineering, University of Leeds

In this Presentation, ...

- Why do we study particle suspensions?
- Numerical simulation
- Pipe flow with variable bed heights
- On gravity, agglomeration, breakup

(A) Suspension of particles in fluid are common in many fields, eg

- biological systems (blood)
- (B) We argt Gensidering dense)suspensions
 - foduswagl qowoplesging (waste slurries)
 - agglomerate breakup
 - direction of gravity
 - presence of stationary bed

(A) Suspension of particles in fluid are common in many fields, eg

- biological systems (blood)
- natural systems (cloud)
- industrial processing (waste slurries)

(A) Suspension of particles in fluid are common in many fields, eg

- biological systems (blood)
- natural systems (cloud)
- industrial processing (waste slurries)

(A) Suspension of particles in fluid are common in many fie

- biological systems (blood)
- natural systems (cloud)
- industrial processing (waste slurries)

(A) Suspension of particles in fluid are common in many fields, eg
 biological systems (blood)
 (P) We are considering dense suspensions

- (B) We are considering dense suspensions
 - four way couplinging (waste slurries)
 - agglomerate breakup
 - direction of gravity
 - presence of stationary bed

Dense suspensions where volume fraction $\alpha_p \ge 10^{-3}$

- four way coupling
- agglomerate breakup
- direction of gravity
- flows with variable bed heights

Dense suspensions where volume fraction $\alpha_p \geq 10^{-3}$

- four way coupling
- agglomerate breakup
- direction of gravity
- flows with variable bed heights

- $\sigma(t) \sim \mu \left(\epsilon / \nu \right)^{1/2}$
- $\sigma_{cr} \sim r^{-q} \sim N_{pp}^{-q/d_f}$
- $q = [9.2(3 d_f) + 1]/2$
- Breakup occurs $\sigma > \sigma_{cr}$
- into two equal daughters

Dense suspensions where volume fraction $\alpha_p \ge 10^{-3}$

- four way coupling
- agglomerate breakup
- direction of gravity
- flows with variable bed heights

Dense suspensions where volume fraction $\alpha_p \ge 10^{-3}$

- four way coupling
- agglomerate breakup
- direction of gravity
- flows with variable bed heights

Numerical Methods

- 1. Highly resolved large eddy simulation
- 2. Robust discrete particle simulation
 - particle dispersion
 - particle collision & agglomeration
 - agglomerate breakup
 - particle deposition
 - particle resuspension
- 3. UoL high performance computing ARC2, ARC3

Governing Equations

• Navier-Stokes for the fluid phase subject to the continuity

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re_b} \nabla^2 + f$$
$$\nabla \cdot \mathbf{u} = 0$$

• Newton-Euler for spherical particles

$$m_{p} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{F}$$
$$\mathbf{I} \frac{\mathrm{d}\Omega}{\mathrm{d}t} = \mathbf{T}$$

Turbulent Pipe Flow

Streamwise Velocity and Vorticity of Pipe Flow, $B_h = 0$

LES Versus DNS Results of Pipe Flows at $B_h = 0$

Dense Suspension in Channel Flow

Turbulent channel flow

- $Re_{\tau} = 300 \Rightarrow Re_b \approx 5,100$
- $2h \times 2\pi h \times 4\pi h$; h = 0.02 m
- $129 \times 128 \times 128$ grid points
- Periodic boundary conditions in y- and z-directions
- No-slip condition on the wall

Calcite Parameters

•
$$\rho_p = 2170 \text{ kgm}^{-3}$$

•
$$d_p = 60 \ \mu \text{m}; \ \alpha_p = 10^{-3}$$

•
$$H = 3.8 \times 10^{-10} \text{ J}$$

•
$$\delta_0 = 2.0 \times 10^{-10}$$
 m

•
$$\bar{\sigma} = 3.0 \times 10^8$$
 Pa

•
$$N_0 \approx 2,740,000$$

Turbulent channel flow

- $Re_{\tau} = 300 \Rightarrow Re_b \approx 5,100$
- $2h \times 2\pi h \times 4\pi h$; h = 0.02 m
- $129 \times 128 \times 128$ grid points
- Periodic boundary conditions in y- and z-directions
- No-slip condition on the wall

Calcite Parameters

- $\rho_p = 2170 \text{ kgm}^{-3}$
- $d_p = 60 \ \mu \text{m}; \ \alpha_p = 10^{-3}$
- $H = 3.8 \times 10^{-10} \text{ J}$
- $\delta_0=2.0 imes10^{-10}~{
 m m}$
- $\bar{\sigma}=3.0 imes10^8$ Pa
- $N_0 \approx 2,740,000$

Results

PDF of Wall-normal Position of Breakup Events

$d_p = 60 \ \mu m, \ St = 0.1, \ UF$

Population of Primary Particle and Agglomerates

Collision, Agglomeration and Breakup

- Particle segregation towards the wall decreases from DF, NG to UF.
- Breakup decreases from DF, NG to UF.

- More collisions occur from DF, NG to UF and with t⁺
- Breakup populates agglomerates with smaller N_{pp} with higher collision rate.

Collision, Agglomeration and Breakup

- More collision means more agglomeration.
- Agglomeration decreases in the order DF, NF and UF.

- *N*_{bk} and *N*_a are inversely proportional
- Agglomerates population increases in the order, DF, NG and DF 14/18

400

Turbulence modulation

Effect of Gravity on Fluid Velocity Statistics

downward flow; no-gravity flow; upward flow; DNS no-gravity flow

Conclusions

Conclusions

- LES of turbulent pipe flow is looking good. The pipe flows with variable bed height will be shown later.
- Successfully implemented particle-particle interactions (collision, agglomeration and breakup events) in BOFFIN LES code.
- Turbulence intensity and direction of gravity influence the particle segregation with respect to the wall
- PSD and gravity have weak and strong influence on the turbulence modulation.
- Particle dynamics in pipe flow with variable bed height is ongoing.

Acknowledgements

Thank you for listening! Any Question?

In-situ Characterisation of Sludge in the Legacy Ponds

Olusola Ayoola

PhD Researcher | The University of Manchester **Penrith 2017**

Supervisors: Prof. Barry Lennox, Dr. Simon Watson and Dr. Geoff Randall

The University of Manchester

In-Situ (On-Site) Measurements

+ <u>4.0%</u>

In-situ Characterisation of Sludge in the Legacy Ponds

About Sludge

- A semi solid slurry
- A result of settled suspensions.
- Caused by material corrosion and environmental debris.

Radioactive sludge from the NPP A1 Jaslovske Bohunice Reactor, Slovakia

About Sludge Characterisation

- An analysis of chemical and physical properties
- A quantitative measurement of sludge behaviour
- It provides an understanding of the cost and hazards (if any).

The Big Questions

- How often should sludge be characterised ?
- What are the challenges involved ?

- High Porosity
- Coarse Particles

Rock- Like	Slurry- Like	Hard Sludge
- Aller	2. 23	

Year 2011

Methods of Sludge Characterisation

- Ex-Situ (Off Site) method
- In-Situ (On Site) method

- Limited accessibility around the pond
- Challenges
- **Exposure** limitations
- Storage limitations

The Interest

- Provide real-time mapping
- Further improve safety
- Increase confidence in results

The Interest

Hence the need to migrate from

Ex-Situ to In-Situ

sludge characterisation

Deploy a Remote Operated Vehicle

© UoM- AVEXIS

Deploy a Remote Operated Vehicle

Mount a Mobile Sampler-Analyser

 Capacity of the Remote Operated Vehicle (ROV)

- Challenges
- The efficiency of the sampling mechanism
- The feasibility of a mobile analyser (for particle size analysis)

•	Capacity of the Remote Operated
	Vehicle (ROV)

Challenges

- The efficiency of the sampling mechanism
- The feasibility of a mobile analyser (for particle size analysis)

The Sampling Mechanism Idea

- Collect 100ml of sludge and 900ml of clean water (10 % v/V)
- Have an in-house PSD analyser
- Be self cleansing

	 Capacity of the Remote Operated Vehicle (ROV)
Challenges	 The efficiency of the sampling mechanism
	 The feasibility of a mobile analyser (for particle size analysis)

Laser Diffraction Method

www.malvern.com www,particle.dk/

Laser Diffraction Method

Dynamic Light Scattering

www.wyatt.com/

Lens

Photon

Features

- Delicate optical alignment
- Susceptible to mechanical disturbances

ULTRASONIC SPECTROSCOPY

www.researchgate.net/figure/45901368_fig1_Figure-1-The-Malvern-Ultrasizer-11-with-its-associated-temperature-control-unit

Ultrasonic Spectroscopy

- Uses sound waves in the range 1 100 MHz
- The transmission of sound waves through the particulate samples
- The measurement of the ultrasonic attenuation spectrum (UAS).
- The conversion of the UAS to particle size distribution (PSD)

Ultrasonic Spectroscopy: How It Works

Ultrasonic Measurement Principle (Sympatec OPUS)

Ultrasonic Spectroscopy: The Theory

Causes of acoustic attenuation (Energy losses):

- Wave-Scattering Losses (Wave theory)*
- Absorption Losses (Mechanics theory)*
- Thermal Losses (Heat theory)**
- Visco-inertial Losses (Viscosity theory)**

Mathematical Interpretation Challenge

Mathematical Interpretation Challenge

Mathematical Interpretation Challenge

•
$$A_i(w, x_i) = A(w, 0) e^{-\alpha(w)x_i} e^{\frac{jwx}{c(w)}}$$
 (1)

•
$$\frac{w}{c(w)} + j\alpha(w) = k_c \left(1 + \frac{3\varphi}{jk_c^3 R^3}\right) (A_o + 3A_1 + 5A_2)^{0.5}$$
 (2)

•
$$A_n(r,f) = -j \sin(\eta_n(r,f)) \cdot e^{-\eta_n(r,f)}$$
 (3)

•
$$K_{i,j} = -\frac{4\pi}{K_c^2} \sum_{0}^{n} (2n+1) \left| A_n(r_i, f_j) \right|^2$$
 (4)

•
$$\alpha(f) = C_{p.a} \Delta L K(x, f) dQ_3(r)$$
 (5)

Mathematical Interpretation Challenge

Temperature	Density	Shear viscosity	Thermal conduct	Isobaric heat pacity	Isochoric heat capacity	Ratio of specific heats	Speed of sound
Т	ρ	η	τ	P	C_V	γ	v
°C	kg m ⁻³	Pa s	$W m^{-1} K^{-1}$	¹ m ⁻³	J kg ⁻¹ m ⁻³		m s ⁻¹
7	999.81	1.43E-03	0.5747	,200.6	4199.2	1.0003	1434.92
10	999.70	1.31E-03	0.5800	4195.6	4190.4	1.0012	1447.29
15	998.97	1.14E-03	0.5900	4188.7	4174.2	1.0035	1465.96
25	997.00	8 88E-04	0.6075	4181.5	4137.5	1 0106	1496 73

Mathematical Interpretation Challenge

- Requires a database of parameters for all the materials present in the sample.
- Not feasible for a largely unknown sample

Proposed Solution

•
$$\alpha(f) = C_{p.a}\Delta L K(x, f)dQ_2(r)$$

• $\alpha_2 = \begin{bmatrix} k_2(11) & \cdots & k_2(1n) \\ \vdots & \ddots & \vdots \\ k_2(n1) & \cdots & k_2(nn) \end{bmatrix} q_1 q_2 q_2$

•
$$A_n = K_n Q_n$$

• Let
$$AA_{nm} = [A_{n1} \ A_{n2} \ \dots \ A_{nm}]$$

• and
$$QQ_{nm} = [Q_{n1} \ Q_{n2} \ \dots \ Q_{nm}]$$

•
$$AA_{nm} = KK_{nm} QQ_{nm}$$

 $\bullet \begin{bmatrix} \alpha_{-}(11) & \cdots & \alpha_{-}(1m) \\ \vdots & \ddots & \vdots \\ \alpha_{-}(n1) & \cdots & \alpha_{-}(nm) \end{bmatrix} = \begin{bmatrix} k_{-}(11) & \cdots & k_{-}(1n) \\ \vdots & \ddots & \vdots \\ k_{-}(n1) & \cdots & k_{-}(nn) \end{bmatrix} \begin{bmatrix} q_{-}(11) & \cdots & q_{-}(1m) \\ \vdots & \ddots & \vdots \\ q_{-}(n1) & \cdots & q_{-}(nm) \end{bmatrix}$

Proposed Solution

- Obtain the KK_{nm} Matrix by:
 - a) analysing the UAS (AA_{nm}) and PSD (QQ_{nm}) properties of some ex-situ samples over time.
 - b) Or by creating a database of thermo-mechanical properties through lab-based experiments.

45

• Calculate the percentage confidence in the KK_{nm} Matrix as no single K-Matrix will fit all.

Conclusion

- In-situ characterisation offers the advantage of continuous data gathering and high amount of sampled data.
- In the absence of a reliable data interpretation algorithm, the ultrasonic attenuation data does provides sufficient information about changes within the sludge bed.

Thank You For Listening

ab initio Molecular Dynamics Studies of Hydrated Hydroxide Complexes

- 16th October 2017
- Olivia Lynes
- Supervisor: Andy Kerridge
- Industrial supervisor: Jonathan Austin

Talk Overview

- Initial aims of the project
- Aquo complexes
- Hydroxide complexes
 - Monohydroxides
 - Dihydroxides
- Mineral surface CeO₂
- Final stages of the project
- Conclusion

Project Aims

Computational simulations of storage pond sludge disturbances

- Understanding the interactions of:
 - Strontium, caesium, uranium with particulates.
 - *ab initio* molecular dynamics:
 - Large amount of data
 - Novel research method for this area.
- Studying:
 - Hydration Structure
 - Absorption effects/ surface interaction.
 - pH Effects

Methodology

- CP2K (version 3)
 - Periodic planewave code
- *ab initio* molecular dynamic (AIMD) calculations.
 - Total simulation time of 20 picoseconds.
 - 5 picosecond equilibration period
 - 0.5 fs timestep- 1/10th smallest vibration
- Gaussian Augmented Planewave method (GAPW)
 - Goedecker-Teter-Hutter (GTH) pseudopotentials
 - PBE/DZVP with Grimme d2/d3 dispersion
- Nosè-Hoover thermostat- 400 K

Aquo Complexes

Figure 1: a) Periodic representation of the system. B) Single unit of 64 H_2O molecules with central metal ion (Ca²⁺)

- Studied to establish the model. Well studied in the literature.
- Builds on previous gas phase calculations in the group.
- Ponds are wet!

Aquo Complexes

Coordination Number (CN)

- Number of oxygens coordinated to the metal ion.
- Any CN which lasted less than 0.1 ps discounted as "not a true transition"

Bond Length

• Average bond length for the first solvation shell.

Figure 2: Octahydrated Sr²⁺

	CN Residence time %								
	6	7	8	9	10	Av. CN	Lit Value	Av. Bond Length/ Å	Lit Value/Å
Mg	100	-	-	-	-	6.00	6	2.13	2.07-2.12
Ca	3.38	45.69	48.29	2.63	-	7.50	6-8	2.44	2.35-2.68
Sr	0.23	14.09	69.57	15.28	0.83	8.02	7-9	2.69	2.52-2.69

Hydroxide Complexes

- Next stage in the research unexplored in literature
 - AIMD is particularly novel in this area
 - Interested in the dynamics of proton transfer
- Look at the effects of higher pH on solvation structure
- Ponds are generally kept at 11-12 pH
- Looked at mono, di and tri hydroxide complexes

Sr Monohydroxide: OH⁻ Distance from ion

- Single hydroxide
- with varying initial conditions
- 100 ps of data collected in total
- Proton transfer or hydroxide migration?

Sr Monohydroxide: Oxygen Number

Sr Monohydroxide: Proton Transfer Events (PTE)

Alkali Earth Dihydroxides

Figure 3: Visual representation of a strontium di-hydroxide. 2 OH- ions (O blue, H yellow) with a Sr^{2+} ion (brown) in the centre.

- Mg²⁺
- Ca²⁺
- Sr²⁺
- Placement of the OH⁻ was varied in each of the trajectory runs.
- 300 ps trajectory was collected per ion.

Changes in CN and Bond Length

Average Bond Length/ Å

	Water	10H ⁻	20H ⁻	
Mg	2.13	-	2.15	
Ca	2.44	-	2.47	
Sr	2.69	2.70	2.69	

Overall First Shell CN

	Water	10H ⁻	20H⁻
Mg	6	-	5.92
Са	7.5	-	6.63
Sr	8.02	7.97	7.61

Hydroxide First Shell CN

	10H ⁻	20H ⁻
Mg	-	0.95
Ca	-	0.7
Sr	0.1	0.26

Residence times / %

	0	1	2	
Mg	24.77	55.9	19.34	
Са	44.44	41.42	14.14	
Sr	76.42	21.65	1.93	

Proton Transfer Events

Figure 4: Visual representation of a strontium di-hydroxide. 2 OH^- ions (O blue, H yellow) with a Sr^{2+} ion (brown) in the centre.

UO₂²⁺ Water and Hydroxide Comparison

Hydroxide Summary

- Introduction of hydroxides had little effect on average bond length.
- The movement of hydroxides through the system occurs through proton transfer events.
- PTEs are more likely to occur outside of the first solvation shell.
- Uranyl binds tightly to hydroxide molecules with little or no PTE occurring.

Oxide Surface- CeO₂

Figure 8: visual representation of the CeO₂ 111 surface

- UO₂ is one of the main minerals of interest.
- CeO₂ is a well known analogue for uranium dioxide, as it closely resembles the mineral structure of fuel grade UO₂.
- It is already used both computationally and experimentally with good results.

System Set Up

Figure 9: visual representation of the CeO₂ 111 surface with a 32 water molecule layer

- CeO₂ (111) Surface built and optimised
- Using a 4x3x2 surface
- 32 waters on top
- 15 Å vacuum above the water

System Set Up

Figure 10: visual representations of the CeO_2 111 surface with a 32 water molecule layer with Sr^{2+}

- Ion environment varied.
- Geometry optimisations of each system will be carried out.
- Comparisons of the energetics of each system.
- Potentially time available to investigate the dynamics.

Final Stages of the Project

- Hydroxide Systems AIMD
 - Monohydroxide for UO_2^{2+} ongoing, 20 ps left.
 - Dihydroxide complete.
 - Trihydroxide for La³⁺ and Lu³⁺ ongoing, 40 ps left.
- CeO₂ Oxide Surface DFT + U
 - Optimisation of surface structure complete.
 - Optimisation of surface with water structure ongoing.
 - Optimisation of surface with waters and ions-ongoing.
 - Potentially- AIMD run of a CeO₂ water/ion system.

- Successfully developed an accurate solvation model.
- Investigated the effect of the introduction of hydroxide on the solvation model.
- Developed an analysis method for the dynamics of proton transfer.
- Set up a viable analogue model for the mineral surface in the storage ponds.

Any Questions?

- Theme 3 Annual Meeting
- 16th October 2017
- Olivia Lynes
- o.lynes@lancaster.ac.uk

Tailored Cs/Sr Ion Exchange in Sn-Umbite by Framework Substitution

Tzu-Yu (Evin) Chen 16/10/17

Umbite K₂SnSi₃O₉ · H₂O

UNIVERSITY^{OF} BIRMINGHAM

School of Chemistry

Zeotype materials

There is scope for novel ion exchangers that have

- improved stability,
- ion exchange selectivity,
- easy conversion pathways into dense ceramics for long term storage
- Microporous framework materials
- Chemically and thermally stable materials
- Various M^{IV} (M = Ti, Zr, Sn) silicates or germanates based on stable minerals.

Petarasite (AV-3) Na₅Zr₂Si₆O₁₈(Cl,OH)·2H₂O

Sn-Kostylevite (AV-7) $Na_{0.5}K_{1.5}SnSi_3O_9 \cdot H_2O$

Nb-CST: Na_{1.5}Ti_{1.5}Nb_{0.5}O₃SiO₄·2H₂O as found in IONSIV

Sn-umbite

Sn-Umbite, $K_2 \text{SnSi}_3 O_9 \cdot H_2 O$ Orthorhombic, $P2_1 2_1 2_1$ a = 10.101, b = 13.136, c = 7.157 Å

- Site 1 is in a 8MR tunnel consisting of six SiO₄ tetrahedra and two SnO₆ octahedra;
- Site 2 is in another 8MR tunnels composing of four SiO₄ tetrahedra and four SnO₆ octahedra.
- H₂O molecules only locate in channels along with Site 2 cations.

Lattice parameters (Pawley fitting)

	а	b	С	V
Sn-umbite	10.114	13.1521	7.1641	953.004
Sn_25Ge	10.1257	13.2200	7.2120	965.409
25Nb	10.1109	13.1983	7.1674	956.478
25Sb	10.1236	13.1665	7.1688	955.542
25(Y,Nb)	10.1533	13.2088	7.1672	961.299
25(Sc,Nb)	10.0990	13.1524	7.1592	950.928

Static batch ion exchange test

- 0.1M CsNO₃ or Sr(NO₃)₂, V/m=100 mL/g, shake for 1 day.
- XRF analysis on loose powder

Normalised molar ratio of Sr/Cs uptake to octahedral elements in the substituted umbites

Possible Factors

- Different tunnel /pore size due to partial substitution.
- When replacing Sn⁴⁺ with pentavalent elements such as Nb⁵⁺ or Sb⁵⁺, less K⁺ cations are required for charge neutralisation forming **less crowded tunnels** to accommodate more hydrated Cs or Sr.

Structural studies

- Pore chemistry
- Coordination environment

Cation mobility

- Ionic conductivity
- NMR
- Computational studies

Rietveld Refinement (Neutron data)

	6 CN	Radius (Å)		Sn-umbite	25Nb	25Sb
	Sn ⁴⁺	0.69	а	10.11(3)	10.10(8)	10.12(4)
	Nb ⁵⁺	0.64	b	13.15(4)	13.16(11)	13.16(5)
25Sb umbite	Sb ⁵⁺	0.60	С	7.16(2)	7.18(6)	7.17(3)
Deuterated sample TOF neutron data			V	952.3(50)	954.2(13)	954.8(66)
bank2			Porosity (unit cell)	55.73%	55.85%	55.80%
0.5 0.45 0.4 0.5 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			Almos volum	t no chan e or pore	ge in uni s	t cell
$\chi^2 1.543$ $R_{wp} 1.73$ $R_p 1.64$	0.6 0.55 0.5 0.4 0.4 0.3 0.3 0.25 0.2 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05			bank3		

.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 7.500 7.500 8.500 8.500 9.500 10.500 10.500 10.500 11.500 12.500 12.500 12.500 13.500 14.000 14.500 15.500 15.500 16.000 16.500 17.500 17.500 18.500

Ionic conductivity

- Ionic conductivity studies in a number of aluminosilicate zeolites have been made, with special focus on the ion-exchange properties of zeolite samples and on the effect of different channel dimensions (e.g., aperture size) on the ionic conductivity.
- Low conductivity in zeolitic materials :
- 1. the negatively charged **framework** structure of traditional zeolites has very strong attraction for **cations**, which hinders ion migration;
- 2. the size of channels or cages in some of the zeolites is so large that the mobile ions are trapped on the walls of the channels or cages

Figure 8. Ac impedance spectra for dehydrated $K_3HGe_7O_{16}$ at selected temperatures, 247, 278, and 345 °C; R_b is bulk resistance; solid line is drawn to guide the eye.

 $\sigma = (1/R)^*(d/A)$, where *d* is the thickness of sample and *A* is the area of electrode

Temperature dependent conductivity Activation energy for transport could be calculated by fitting conductivity data to Arrhenius equation

$$\sigma T = \sigma_o \exp\left(-\frac{E_a}{kT}\right)$$

Activated energy

Temperature (°C)

Impedance

How mobile?

Impedance

Various pH

Cs

- 0.05 N CsCl-CsOH solution
- molar ratio of CsCl/CsOH= 1:9
- pH adjusted with HNO₃
- V/m=100 mL/g
- shake for 1 day
- XRF analysis on loose powder

25Nb Sn-umbite

- K/octahedral elements
- Cs/octahedral elements

Sn-umbite

Cs/oc site K/oc site

25Sb Sn-umbite

pH independent

Cs/oc site K/oc site

pH13

Various pH

Sr

- □ 0.05 N SrCl₂-Sr(OH)₂ solution
- molar ratio of SrCl₂/Sr(OH)₂= 9:1
- **D** pH adjusted with HNO₃
- V/m=100 mL/g
- □ shake for 1 day
- □ XRF analysis on loose powder
- K/octahedral elements
- Cs/octahedral elements

Sn-umbite

Sr/oc site K/oc site

Sr/oc site K/oc site

Sr/oc site K/oc site

Simulants

• Harwell simulants

Na	100 ppm
Ca	1.5 ppm
CI	5.57 ppm
Mg	0.99 ppm
Cs	20 ppb
Sr	4 ppb

• Hanford simulants

Ве	NO ₃
Са	PO4
Cd	SO4
Cr	ОН
Cs	CO ₃
Cu	Formate
Fe	Acetate
Na	Oxalate
Ni	
Pb	
Si	

Compo	etitive	itive V/m=100 mL/g, shake for 1 day XRF on loose powder				
		Sn-umbite	25Nb	25Sb	25(Y,Nb)	25(Sc,Nb)
	Na					
	Mg					
	Са					
	Cs					
	Sr					

100 mmm of No. Ma. Co. Co. and Cu

• Sellafield simulants

	Case 1	Case 2	Case 3	Case 4
рН	11.2	11	10	>10
¹³⁷ Cs	0.001	0.362	0.302	1.51
⁹⁰ Sr	0.000015	0.0153	0.0567	0.032
Na	70	130	60	210
K	0.2	10	20	250
Ca	0.2	3	1.2	60
Mg	0.1	3	140	30
U		2	200	

numbers shown in ppm

Conclusion

- Ion exchange in umbites can be tailored by framework substitutions.
- Cs and Sr uptake drastically improves with increasing Nb/Sb content.
- It is possibly attributed to the less crowded pores formed and a subsequent increase in ion mobility.

1100 °C, 150 MPa, Ar, 2 hrs, mild steel can

HIPed Cs-25Nb-umbite

Further Work

- Interaction with the mild steel
 Amorphous Sn-Fe-Si glass formation
 HIP condition (pressure induced) affecting the thermal conversion
- NMR measurements for cation conductivity
- Ion exchange in the presence of competitive cations

Acknowledgement

UNIVERSITY^{OF} BIRMINGHAM

School of Chemistry

Engineering and Physical Sciences Research Council

investing in **your** future

European Regional Development Fund

European Union

www.advantagewm.co.uk

Imperial College London

Durability of heterogeneous ILW glass/ceramic wasteforms for complex waste streams

Paul C. M. Fossati, Michael J. D. Rushton & William E. Lee

p.fossati@imperial.ac.uk

Modelling side of previous work by R.K. Chinnam

Purpose: modelling durability of interfaces in GCC at the atomic scale

Modelling side of previous work by R.K. Chinnam

Purpose: modelling durability of interfaces in GCC at the atomic scale

Material of interest

RuO₂ crystals in borosilicate glass

- Common crystallite in glass waste forms
- Simple structure

Effect of secondary phases

- Change melt and glass thermophysical properties
- Change radiation resistance?
- Change long-term behaviour?

Crystal picture: Rose et al., 2011

Modelling approach: material

Simplified material

- Sodium silicate glass (Na₂O)_x(SiO₂)_{1-x}
- Rutile TiO₂, isomorphous with RuO₂
- Parameter 1: Na concentration (glass polymerisation)
- Parameter 2: crystal orientation (interface topology)

Molecular Dynamics model

Atomistic model

- Empirical (classical) force fields
- Calculate atomic trajectories

Empirical potentials

- Rigid-ion
- Pair interactions (simple and efficient)
- Wide range of compounds

Simulation parameters

- ~ 300 000 atoms
- ~ 130x130x180 Å
- Quench rate: 2.5 K/ps

Scalable

- ~ ns simulation time, necessary for diffusion
- million+ atoms, necessary for fracture

Potential: Pedone et al., 2006

Glass/Crystal Composite (GCC) creation

Critical parameter: quench rate T

- as small as practically possible (but still very high)
- needs to be consistent across simulations

Fixed parameter: glass density

- fixed to experimental room-temperature values
- volume kept constant during quenching

Variations considered

- crystal orientation (12 interfaces with indices lower than 3)
- glass composition (0%, 10% and 20% Na₂O)

Glass

Crystal Frozen during quenching

GCC interfaces

Interfaces

(100) rutile surface

(121) rutile surface

Interface orientations

- All planes with indices ≤ 2 tested
- Examples shown here: (100) and (121)

Segregation on GCC interfaces

z-density plots

- show concentration of each species as a function to distance from interface
- on the crystal side: clear, well-defined peaks for most interfaces
- on the glass side: 1 Si-rich layer, sometimes several successive layers

Ordering of the first glass layer: (100) interface

SiO₄ tetrahedra

Representation of the first silicate layer

Colour code:

Na ions

TiO₆ octahedra not shown

0% Na₂O

10% Na₂O: most tetrahedra are aligned

20% Na₂O: Na compete with tetrahedra

Sodium effect

- Na promotes ordering initially
- But then limits population of aligned SiO₄
- Higher Na concentration: Na lines
- With Na: most tetrahedra connected to the crystal by 3 O (face-connected)

Ordering of the first glass layer: (121) interface

SiO₄ tetrahedra

Representation of the first silicate layer

Colour code:

Na ions

TiO₆ octahedra not shown

0% Na₂O

10% Na₂O

20% Na₂O: aligned Na

Sodium effect

- Na-rich channels
- Na concentration does not seem to change SiO₄ ordering
- Face-connected tetrahedra not dominant

Ordering beyond the first glass layer: (100) interface

Face-connected tetrahedra

- Constrain the glass network
- Cause layering in the glass phase
- Open possible diffusion channels

Radiation damage

Modelling approach

Cascades

- One initial high-energy atom (PKA)
- Energy spread along high-energy particles trajectories
- Branches
- ~ 10 keV range

Displaced atoms during a 10 KeV cascade in glass with 10 wt% Na₂O

Cascades: channeling

- Observed for both Na and Si
- Main direction: [001]

Channeled cations

- Tend to travel along channels far from interface
- Results in subcascades in the bulk crystal
- Not much energy is deposited close to the interface

10 keV cascade on (001) interface

Paul Fossati

Cascades: extrinsic defects

Some ion exchange

- Mostly Ti \rightarrow glass (rarely beyond the first layer)
- Some Na and Si → crystal (channeled)

Defect	ΔE
Tiglass	0.5 eV
Tii	3.5 eV
Nai	0.7 eV
Si _{Ti}	1 eV

Estimates from simulations with x=0.1

- Driving force for Ti_i to move to the glass once they have formed
- Si tends to be substitutional
- Na tends to be interstitial

Cascades: interface ordering

10 keV cascade on (100) interface (x=0.1)

Ordering perturbations

- Ti-rich regions in the silicate layer
- Ti coordination environments
 - 4 (tetrahedra)
 - 5 (truncated octahedra)
 - 6 (octahedra)
- Tend also to be poor in Na

Plan: Next steps

Other crystal structures

- Spinel
- Zeolites

Acknowledgments

Erik Hansen Robin Grimes

Computing facilities

- Imperial College HPC facilities
- Thomas (Tier-2 hub in Materials and Molecular Modelling)

Imperial College London

Engineering and Physical Sciences Research Council

Imperial College London

Durability of heterogeneous ILW glass/ceramic wasteforms for complex waste streams

Paul C. M. Fossati, Michael J. D. Rushton & William E. Lee

p.fossati@imperial.ac.uk

Switching on Ion Exchange in Metal Germanates

Ryan George

Clinoptilolite (Clino)

- Natural zeolite used for Cs and Sr removal In SIXEP.
- Found worldwide mined commercially in 16 countries.
- SIXEP clino shows high Cs and Sr selectivity.
- Composition varies, so does level of impurities.

Design Principles

- Target ¹³⁷Cs and ⁹⁰Sr
- Design Principles
 - High thermal and chemical stability.
 - Potential direct thermal conversion to wasteform.
 - Medium sized pores (6-8 ring pore openings).
 - Hydrated cations located in channels, exchange K⁺ for Na⁺/H⁺.

Octahedral-tetrahedral frameworks

- Some of these materials are naturally occurring.
- A wide range of materials have been synthesised with various different metal octahedra and Si tetrahedra.
- These materials are microporous and have hydrated cations in the channels, commonly sodium and potassium. Hence the interest as potential ion exchange materials.

Octahedral-Tetrahedral frameworks

AV-7: Na_{0.5}K_{1.5}SnSi₃O₉.H₂O

EMS-2: Na₄K₄Sn₄Si₂₀O₅₂.12H₂O

AV-6: K₂(Sn/Zr/Ti)Si₃O₉·H₂O

5

AV-13: $Na_{2.26}(Sn/Zr/Hf)Si_{3}O_{9}CI_{0.26}.xH_{2}O$

AV-3: $Na_5Zr_2Si_6O_{18}(CI,OH) \cdot 2H_2O$

Ge vs Si

- Most of the published work covered focuses on changing the octahedral metal ion.
- Variation of the tetrahedral component may allow for further tunability.

Element	CN	Ionic radius
Si ⁴⁺	4	0.26 Å
Ge ⁴⁺	4	0.39 Å

OT Germanate phases

- Small number of microporous germanates are known.
- First phase of interest is K₂ZrGe₃O₉.H₂O, originally reported by Plevert *et al.*, *Inorg. Chem*, 2003, **42**, 5954-5959.
- This is a germanate derivative of the natural zirconosilicate mineral Umbite.
- Ion exchange properties not explored in the literature.

Umbite type materials

- $K_2MSi_3O_9.H_2O$ where M = Ti, Sn and Zr are all known with ion exchange properties explored.
- VT XRD shows conversion to Wadeite (K₂MGe₃O₉) at ~750°C

K₂ZrGe₃O₉.H₂O

- Hydrothermal synthesis optimised to produce multigram quantities (ca. 80% isolated yield) from GeO₂, ZrOCl₂.8H₂0 and KOH at 200°C for 24 hours.
- Plevert *et al* recipe would yield around 0.3g per batch with a longer synthesis time.
- Next step was ion exchange

Ion exchange method

- 0.1M Cs/Sr nitrate solutions
- 1:100 w/v ratio of sample to solution
- 24 hour exchange at room temperature
- Sample shaken at 140 rpm
- Exchange analysed by XRF

Element	Uptake
Na	No
Mg	No
Са	Very Low
Sr	Very Low
Cs	Very Low
Cs + K	Further reduces Cs uptake

Fused Beads

- Sample pre-treated at 800°C.
- Sample mixed with Li borate glass flux in a 1:10 ratio.
- Mixture heated in a platinum crucible at 1050°C with a 7:7:2 heating regime.
- Better data quality than loose powder and pressed pellet.

K₂ZrGe₃O₉.H₂O lon exchange

Element	Molar ratio	Expected ratio
Ge	1	1
Cs	0.02	-
Zr	0.41	0.33
К	0.68	0.66

• XRF analysis on fused beads

Nb substitution

Element	CN	Ionic radius
Zr ⁴⁺	6	0.72 Å
Ti ⁴⁺	6	0.605 Å
Sn ⁴⁺	6	0.69 Å
Nb ⁵⁺	6	0.64 Å

- Nb⁵⁺ \longrightarrow Zr⁴⁺ + K⁺
- Single phase up to 30% Nb⁵⁺ for Zr⁴⁺

Nb substitution

K_{2-x}Zr_{1-x}Nb_xGe₃O₉.H₂O lon exchange 15

	10% Nb	20% Nb	25% Nb
Element	Molar ratio	Molar ratio	Molar ratio
Ge	1	1	1
Cs	0.16	0.17	0.39
Zr	0.36	0.33	0.32
К	0.54	0.56	0.28
Nb	0.04	0.08	0.1

• XRF analysis on fused beads

Pharmacosiderites

• Sn, Ti substitutions and Nb 40% doping result in the formation of pharmacosiderite phases.

 $\mathsf{HK}_3\mathsf{Ge}_7\mathsf{O}_{16}.\mathsf{4H}_2\mathsf{O}$

Sn and 40% Nb as impurity

ch Councils UK

Energy

For a Low Carbon Futur

HK₃Ti₄Ge₃O₁₆.4H₂O

Ti source

Pharmacosiderites

	Parent	Cs	Sr
Element	Molar ratio	Molar ratio	Molar ratio
Ge	1	1	1
К	0.47	0.18	0.44
Sr	-	-	0.03
Cs	-	0.38	-

Parent	Cs	Sr
Molar ratio	Molar ratio	Molar ratio
1	1	1
1.12	1.08	1.13
0.86	0.21	0.29
-	-	0.28
-	1.05	-
	Parent Molar parent Internation 1 1.12 0.86 -	Parent Cs Molar ratio Molar ratio 1 1 1.12 1.08 0.86 0.21 - - 1.05 -

DISTINCTIVE

Summary

- Substitution of Ge for Si in the umbite structure does not improve ion exchange properties.
- Ion exchange can be switched on by doping Nb⁵⁺ for Zr⁴⁺, with facile Cs⁺ uptake in K_{2-x}Zr_{1-x}Nb_xGe₃O₉.H₂O.
- Other framework substitutions result in the formation of pharmacosiderite phases, which have also been shown to be good exchangers.

Further work

- Measuring K mobility.
- Studying thermal decomposition products of doped umbites and exchanged materials.
- Thermal decomposition of Pharmacosiderites and exchanged materials.
- Studying sodium exchange in ZrGeUmbite.

Acknowledgements

- Dr Joe Hriljac
- Dr Tzu-Yu Chen

investing in **your** future

European Regional Development Fund European Union

www.advantagewm.co.uk

Investigations into dynamic shear based filtration of ferric floc

Keith Schou

Supervised by R.Holdich and M.Dragosavac

Background

During micro and ultrafiltration, filter blocking rapidly reduces the flux.

Shear enhanced (or Dynamic) filtration has been shown to have very large increases in flux up to $17x^{(1)}$

Typical increases in pseudo steady state flux is in the region of 2-4x. (flux is the flow rate of liquid across the filter)

[1] M.Y. Jaffrin, L-H Ding, O. Akoum, A. Brou, A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems. *J Memb Sci.* 2004; 242: 155-167.

Dynamic Shear

Oscillating membrane wall

#InspiringWinners since 1909

Axial and Azimuthal

Oscillating up to 100Hz

Azimuthal

#InspiringWinners since 1909

Calcite – what is it?

Calcium carbonate in cubic crystals.

Aka chalk

Calcite – PSD

#InspiringWinners since 1909

Calcite - Cake

The cake is an average of 37% by volume, found from 27 gravimetric tests.

Rheogram of ~37% Calcite

#InspiringWinners since 1909

Experimental Setup - Diagram

#InspiringWinners since 1909

Nominal pore size 1µm

Slots 400µm x 7µm

14

The Filters

Flux vs time

#InspiringWinners since 1909

Resistance vs shear

#InspiringWinners since 1909

Cake thickness vs shear

#InspiringWinners since 1909

J vs tau

#InspiringWinners since 1909

Comsol - Simulation

#InspiringWinners since 1909

Comsol - Results

The purpose of this is to give an accurate shear stress (τ) value.

#InspiringWinners since 1909

N.J. Blake, I.W. Cumming, M. Streat, Prediction of steady state crossflow filtration using a force balance model. *J Memb Sci.* 1992; 68: 205-215.
G. Foley, Membrane Filtration a problem solving approach with MATLAB, Cambridge University Press, Cambridge, UK, 2013.
Happel and Brenner, Low Reynolds number hydrodynamics, Kluwer Boston, Inc., Hingham, USA, 1983.

Magnesium Hydroxide – PSD

MgOH - Cake

Similar to calcite

Magnesium Hydroxide – SEM

Ferric floc – what is it?

A ferric floc is a substance which sticks to colloids, precipitates, then clump together to produce a large structure which settles.

In situ TEM images show a common 'clump' of ~1µm

Reaction structures

Nano-particulates ~ 2– 4 nm in diameter.

Sometimes reported as: Fe(III)(OH)₃

Images taken from work by Josh Weatherill with permission

Ferric floc – how is it made

 $Fe(III)(NO_3)_3 + 3NaOH \rightarrow FeO(OH) + 3NaNO_3 + 3H_2O$

 $NaOH + HNO_3 - > NaNO_3 + H_2O$

20H⁻ -> H₂O + O²⁻

Fe³⁺ + O²⁻ -> FeO⁺

 $FeO^+ + OH^- -> FeO(OH)$

Iron nitrate Nonahydrate is dissolved in 1M HNO ₃ , and then		
brought to pH 3 with a 7M NaOH solution. This is then brought		
up to pH 9 with a 0.2 M NaOH solution.		

Ferric OxyHydroxide precipitates between pH2.8 and 9.

рΗ	H ⁺ ions
3	1.0x10 ⁻³
4	1.0x10 ⁻⁴
5	1.0x10 ⁻⁵
6	1.0x10 ⁻⁶
7	1.0x10 ⁻⁷
8	1.0x10 ⁻⁸
9	1.0x10 ⁻⁹

Floc Cake

Cake formed on ceramic filer without shear before (left) and cutaway after being removed from water (middle)*

Versapor clad filter under shear

29

Loughborough

*this is not actually true, but demonstrates the point well
Floc filtration

- With an inappropriate filter, a large fluffy cake forms
- This fluffy cake inhibits filtration.
- This fluffy cake has a dense centre, and much fluffier outside.
- By applying a 0.45 µm nominal pore size polycarbonate filter (Versapor) to the outside of the filter, the fluffy cake does not form.
- This leads to much more efficient filtration
- Cake depths after cladding with Versapor to the surface are too small to measure accurately.
- Similar results were gained by pre-coating with Dematiaceous earth

*this is not actually true, but demonstrates the point well

Versapor

- 0.45 µm nominal pore size polycarbonate filter (Versapor) was wrapped around filter and sealed with silicone sealant.
- EDS sampling indicates complete iron retention

EDS Sampling	Fe (%)
Used filtering surface	4.95
Used non-filtering surface	(

0.45 µm nominal pore size Versapor

*this is not actually true, but demonstrates the point well

#InspiringWinners since 1909

Floc aging

Ferric floc converts to haematite (~200 micron crystals) and goethite over time.^[2]

Comparison of shear based filtration on days after the floc was generated

[2] "Ferrihydrite Formation: The Role of Fe13 Keggin Clusters" Joshua S. Weatherill, Katherine Morris, Pieter Bots†, Tomasz M. Stawski, Arne Janssen, Liam Abrahamsen, Richard Blackham, and Samuel Shaw, Environ. Sci. Technol., 2016, 50 (17), pp 9333–9342 DOI: 10.1021/acs.est.6b02481

#InspiringWinners since 1909

Floc aging

- Ferric floc converts to haematite (bright red) (~200 micron crystals) and goethite (yellow) over time.^[2]
- This aging can be observed by slight colour changes*
- A reduction in settled volume of 5-10% per day is also observable*
- Aged floc does not dissolve in acids as easily as fresh floc*

Colour comparison of aged and non-aged floc. The sample on the left is a couple of months old, the sample on the right is freshly made

[2] "Ferrihydrite Formation: The Role of Fe13 Keggin Clusters" Joshua S. Weatherill, Katherine Morris, Pieter Bots†, Tomasz M. Stawski, Arne Janssen, Liam Abrahamsen, Richard Blackham, and Samuel Shaw, Environ. Sci. Technol., 2016, 50 (17), pp 9333–9342 DOI: 10.1021/acs.est.6b02481

*(not yet quantified)

Ferric floc – Settling and Aging

Images taken from work by Josh Weatherill with permission

Floc filtration with shear

Flux is increased as a function of shear, this effect appears to only hold up to 100 Hz

Pseudo steady state flux as a function of frequency (8 g Fe /l, floc made same day)

Floc filtration with shear

Pseudo steady state resistance as a function of frequency (8 g Fe /l, floc made same day)

Floc filtration, trans-membrane pressure

- Increasing trans membrane pressure (TMP) when filtering ferric floc under shear does <u>not</u> increase (or decrease) flux.
- TMP's of just 0.1 bar can effectively filter with flux's of ~500 l.m⁻²/hr⁻¹
- This has not yet been quantified (or repeated enough to provide a reliable graph), however has been observed to be a consistent effect.
- This is consistent with shear enhanced diffusion theory.

Conclusions

Calcite

- There is no difference in azimuthal and axial oscillation improving filtration of calcite.
- There is no difference in to the type of filter used and the flux obtained.
- There is a strong correlation between cake thickness and shear applied.
- It is possible to model this effect.

Ferric floc

- Ferric floc is a challenging material to filter.
- Ferric floc does not filter well on itself, and must have a more appropriate filter.
- Ferric floc ages in just a couple of days, and a significant drop off in flux is observed.
- Ferric floc does not benefit from having large trans membrane pressures
- Ferric floc benefits from shear likely due to shear enhanced diffusion.
- Cake build-ups with appropriate filters and shear rates are almost negligible
- There is a maximum improvement with shear. (at about 100Hz with 0.7mm amplitude)

Further Work

- Investigate the shear based filtration of ferric floc:
 - Quantify the independence of TMP to flux during shear enhanced filtration
 - Concentration testing how shear effects the concentration process, rather then filtering a constant concentration. (Dewatering of floc from 0.03 g/l Fe to 160 g/l Fe)
 - Kinetic filtration model for mineral suspensions- what happens during shear enhanced filtration as a function of time.
 - Filtering ferric floc with non-polymer filters.
 - Quantifying the shear enhanced filtration of ferric floc (in a similar way to with calcite)

Acknowledgments

I would like to thank my sponsor Sellafield Ltd. and my supervisors Richard Holdich and Marijana Dragosavac for allowing me the opportunity to study this. I would also like to thank Hemaka Bandulasena for his help with the Comsol® work.

#InspiringWinners since 1909

Questions

* Also happy Americans fireworks day

#InspiringWinners since 1909

Background

During micro and ultrafiltration, filter blocking rapidly reduces the flux.

Shear enhanced (or Dynamic) filtration has been shown to have very large increases in flux up to $17x^{(1)}$

Typical increases in pseudo steady state flux is in the region of 2-4x. (flux is the flow rate of liquid

across the filter)

[1] M.Y. Jaffrin, L-H Ding, O. Akoum, A. Brou, A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems. *J Memb Sci.* 2004; 242: 155-167.

3.6 a and b Schematic representation and photograph of an EARP ultrafilter module. b Source: Nuclear Decommissioning Authority ("NDA"), copyright: Nuclear Decommissioning Authority ("NDA").

Floc Results

Floc Results

School of Chemical and Process Engineering Faculty of Engineering

Characterisation of Flocculated Dispersions using Acoustic Backscatter Systems

Alastair Tonge

Supervisors: Dr Tim Hunter, Prof. Steven Freear & Prof. Jeff Peakall

UNIVERSITY OF LEEDS

Experimental Setup

UNIVERSITY OF LEEDS

Experimental Setup

Ultrasound Array Research Platform (UARP)

- High resolution concentration & interfaces from backscatter echo strength.
- Up to sixteen individually adjustable, multi-frequency channels.

D.M.J. Cowell et. Al. 10.1109/ULTSYM.2015.0165

Specification	UARP	
Maximum Output	5 Level	
Voltage	\pm 100V, $~\pm$ 50V, GNS	
Transmit	0.5 MHz to 15 MHz	
Frequency		
Number of	16 per module	
channels	(Max: 256)	
Raw data transfer	PCI Express Gen 3	
to computer	(Max : 64Gbps)	
Analog Digital	AFE5807	
Converter	(Max 80MSPS)	
	Communications via PCIe	
Mechanical aspects	Dedicated Clock and	
	Synchronisation signals.	

Measurement principle

$$V_{\rm rms} = \frac{k_s k_t}{r} M_W^{\frac{1}{2}} e^{-2r(\alpha_w + \alpha_s)}$$

- particle species backscatter co-efficient k_s transducer constant k_t distance from transducer face r M_W mass concentration attenuation of water α_w attenuation of suspended particles α_s
- P. D. Thorne and D. M. Hanes, "A review of acoustic measurement of small-scale sediment processes," *Continental Shelf Research*, vol. 22, pp. 603-632, 2002.

Measurement principle

$$G = \ln(\psi r V_{\rm rms}) = \ln(\frac{k_{sh}}{k_t}) + \frac{1}{2}\ln M_W - 2r(\alpha_w + \alpha_{sh})$$

k _{sh}	particle species backscatter co-efficient (under homogeneous conditions)
k _t	transducer constant
ψ	near field correction factor
r	distance from transducer face
M_W	mass concentration
α_w	attenuation of water
α_{sh}	attenuation of suspended particles (under homogeneous conditions)

P. D. Thorne and D. M. Hanes, "A review of acoustic measurement of small-scale sediment processes," Continental Shelf Research, vol. 22, pp. 603-632, 2002.

UNIVERSITY OF LEEDS

Measurement principle

	$\frac{\partial G}{\partial r} = -2(\alpha_w + \alpha_s)$	$1(\partial G)$
$\alpha_w = 0.05641 f^2 e^{\left(-\frac{T}{27}\right)}$	$\alpha_s = \xi_h M_W$	$\xi_h = -\frac{\overline{2}\left(\frac{\overline{\partial r}}{\partial r}\right)}{\partial M_W}$

k _s	 particle species backscatter co-efficient
k _ŧ	transducer constant

- ψ near field correction factor
- *r* distance from transducer face
- M_W mass concentration
- α_w attenuation of water
- α_s attenuation of suspended particles

H. Rice et al, "Measuring particle concentration in multiphase pipe flow using acoustic backscatter: Generalization of the dual-frequency inversion method," J. Acoust. Soc. Am., vol. 136, no. 1, pp. 156-169, 2014.

Glass Particle Acoustic Calibration Procedure

Glass Particle Acoustic Calibration Procedure

Glass Particle Calibration Data (Honite-16)

Concentration Profile Inversion

CALCITE FLOC STUDIES

Flocculation Study – Materials Used

- Calcite (Calcium Hydroxide) was chosen as our test sediment as it has been shown to be a good nuclear simulant for sediment transport processes at Sellafield and used in NSG trials previously.
- The flocculant used is FLOPAM AN93SH a high molecular weight, negatively charged polymer produced by SNF Ltd.
- The medium charge density of the polymer allows it to neutralise the positive charge of the calcium while binding to the particles and forming bridges to others to induce flocculation.

UNIVERSITY OF LEEDS

Test Material Development

• Flocculate with anionic polyelectrolytes (heterogeneous, multi-component sludges).

G-function profiles for Calcite Flocs

Fractal Dimension Measurement Principle

$$N = k_0 \left(\frac{R_g}{a}\right)^{D_f}$$

- R_g Radius of gyration of floc
- a Radius of monomer
- D_f
 Fractal Dimension
- k_0 Constant of order unity

Fractal Dimension Measurement Principle

$$I(q) \propto n_q N_q^2$$

For $R_g^{-1} < q < a^{-1}$
$$I(q) \propto N^2 (q.R_g)^{-D_f}$$

N Number of Primary particles/ scatterers
 R_g Radius of gyration of floc
 a Radius of monomer
 D_f Fractal Dimension
 I Scattered light intensity
 q Scattering wave vector

Sorensen, C.M., "Light Scattering by Fractal Aggregates: A Review" Aerosol Science and Technology. vol. 35, pp. 648-687, 2001

Calcite Floc Fractal Dimension Measurements

Comparison of Experimental Data to Betteridge et al. Model

K. Betteridge, P. Thorne and R. Cooke, "Calibrating multi-frequency acoustic backscatter systems for studying near-bed suspended sediment transport processes," Continental Shelf Research 28, pp. 227-235, 2008.

ANY QUESTIONS?